A219558 Number of odd prime pairs {p,q} (p>q) such that p+(1+(n mod 2))q=n and ((p-1-(n mod 2))/q)=((q+1)/p)=1 where (-) denotes the Legendre symbol.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 3, 0, 2, 0, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 3, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 2, 0, 0, 2, 1, 2, 1, 1, 0, 1, 1, 2, 2, 3, 0, 0, 0, 0
Offset: 1
Keywords
Examples
a(14)=1 since 14=11+3 with ((11-1)/3)=((3+1)/11)=1. a(31)=1 since 31=17+2*7 with ((17-2)/7)=((7+1)/17)=1.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Olivier Gérard and Zhi-Wei Sun, Refining Goldbach's conjecture by using quadratic residues, a message to Number Theory List, Nov. 19, 2012.
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588.
Programs
-
Mathematica
a[n_]:=a[n]=Sum[If[PrimeQ[n-(1+Mod[n,2])Prime[k]]==True&&JacobiSymbol[n-(1+Mod[n,2])(Prime[k]+1),Prime[k]]==1&&JacobiSymbol[Prime[k]+1,n-(1+Mod[n,2])Prime[k]]==1,1,0],{k,2,PrimePi[(n-1)/(2+Mod[n,2])]}] Do[Print[n," ",a[n]],{n,1,10000}]
Comments