cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219558 Number of odd prime pairs {p,q} (p>q) such that p+(1+(n mod 2))q=n and ((p-1-(n mod 2))/q)=((q+1)/p)=1 where (-) denotes the Legendre symbol.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 3, 0, 2, 0, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 3, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 2, 0, 0, 2, 1, 2, 1, 1, 0, 1, 1, 2, 2, 3, 0, 0, 0, 0
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 23 2012

Keywords

Comments

For any integer m, define s(m) as the smallest positive integer s such that for each n=s,s+1,... there are primes p>q>2 with p+(1+(n mod 2))q=n and ((p-(1+(n mod 2))m)/q)=((q+m)/p)=1. If such a positive integer s does not exist, then we set s(m)=0.
Zhi-Wei Sun has the following general conjecture: s(m) is always positive. In particular, s(0)=1239,
s(1)=1470, s(-1)=2192, s(2)=1034, s(-2)=1292,
s(3)=1698, s(-3)=1788, s(4)=848, s(-4)=1458,
s(5)=1490, s(-5)=2558, s(6)=1115, s(-6)=1572,
s(7)=1550, s(-7)=932, s(8)=825, s(-8)=2132,
s(9)=1154, s(-9)=1968, s(10)=1880, s(-10)=1305,
s(11)=1052, s(-11)=1230, s(12)=2340, s(-12)=1428,
s(13)=2492, s(-13)=2673, s(14)=1412, s(-14)=1638,
s(15)=1185, s(-15)=1230, s(16)=978, s(-16)=1605,
s(17)=1154, s(-17)=1692, s(18)=1757, s(-18)=2292,
s(19)=1230, s(-19)=2187, s(20)=2048, s(-20)=1372,
s(21)=1934, s(-21)=1890, s(22)=1440, s(-22)=1034,
s(23)=1964, s(-23)=1322, s(24)=1428, s(-24)=2042,
s(25)=1734, s(-25)=1214, s(26)=1260, s(-26)=1230,
s(27)=1680, s(-27)=1154, s(28)=1652, s(-28)=1808,
s(29)=1112, s(-29)=1670, s(30)=1820, s(-30)=1284.
Note that s(1)=1470 means that a(n)>0 for all n=1470,1471,... That s(0)=1239 is related to a conjecture of Olivier Gérard and Zhi-Wei Sun.
If we replace ((p-1-(n mod 2))/q)=((q+1)/p)=1 in the definition of a(n) by ((p-1)/q)=((q+1)/p)=1, then the new a(n) seems positive for any n>1181.

Examples

			a(14)=1 since 14=11+3 with ((11-1)/3)=((3+1)/11)=1.
a(31)=1 since 31=17+2*7 with ((17-2)/7)=((7+1)/17)=1.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[If[PrimeQ[n-(1+Mod[n,2])Prime[k]]==True&&JacobiSymbol[n-(1+Mod[n,2])(Prime[k]+1),Prime[k]]==1&&JacobiSymbol[Prime[k]+1,n-(1+Mod[n,2])Prime[k]]==1,1,0],{k,2,PrimePi[(n-1)/(2+Mod[n,2])]}]
    Do[Print[n," ",a[n]],{n,1,10000}]