cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219591 Number of nX4 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX4 array.

This page as a plain text file.
%I A219591 #6 Jul 23 2025 00:33:31
%S A219591 10,34,233,1114,4350,16117,60252,226309,831045,2932198,9899904,
%T A219591 32047091,99786646,299774977,871181292,2454943142,6722356023,
%U A219591 17921513868,46593529264,118305418513,293738371262,713963398966,1700512384149
%N A219591 Number of nX4 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX4 array.
%C A219591 Column 4 of A219595
%H A219591 R. H. Hardin, <a href="/A219591/b219591.txt">Table of n, a(n) for n = 1..210</a>
%F A219591 Empirical: a(n) = (1/81868166608700944023552000000)*n^29 - (67/33876482734634873389056000000)*n^28 + (1093/7259246300278901440512000000)*n^27 - (1/940621483677214310400000)*n^26 - (47119/62044840173323943936000000)*n^25 + (1869449/24817936069329577574400000)*n^24 - (296052733/86862776242653521510400000)*n^23 + (54522829/1510656978133104721920000)*n^22 + (167845631/29428382690904637440000)*n^21 - (6024199483/14013515567097446400000)*n^20 + (8467657127141/539520349333251686400000)*n^19 - (2932958591041/11358323143857930240000)*n^18 - (12704169291856247/2584018515227679129600000)*n^17 + (47097728297965439/101334059420693299200000)*n^16 - (1011984217642567843/65143323913302835200000)*n^15 + (364057784069101777/1240825217396244480000)*n^14 - (56366476163066975107/28395807859644825600000)*n^13 - (904186645491855977543/14197903929822412800000)*n^12 + (6474020741492280364763/2600993419650662400000)*n^11 - (1166634295507637525043197/25749834854541557760000)*n^10 + (717109824273215889502078381/1517400982499770368000000)*n^9 - (6363461015557560073335283/4014288313491456000000)*n^8 - (11656748989007326967754487087/323150209236062208000000)*n^7 + (3938184473751556080945711017/5385836820601036800000)*n^6 - (163994244837799128753946400473/22690331049754368000000)*n^5 + (30438522365937746680601642677/680709931492631040000)*n^4 - (60274458996187160134975931/347300985455424000)*n^3 + (102759246483272304467447/275635702742400)*n^2 - (195156984499999649389/776363187600)*n - 310620487 for n>13
%e A219591 Some solutions for n=3
%e A219591 ..1..1..0..0....2..2..0..0....0..0..0..0....1..1..0..0....1..1..0..0
%e A219591 ..1..1..1..0....2..2..1..0....0..0..0..0....1..1..1..0....1..1..1..0
%e A219591 ..2..2..2..2....2..2..1..1....2..1..1..1....2..1..0..0....1..1..1..2
%K A219591 nonn
%O A219591 1,1
%A A219591 _R. H. Hardin_ Nov 23 2012