cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219596 Number of 3 X n arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 3 X n array.

Original entry on oeis.org

6, 21, 84, 233, 550, 1188, 2415, 4684, 8746, 15833, 27945, 48286, 81907, 136629, 224336, 362747, 577797, 906780, 1402432, 2138159, 3214644, 4768098, 6980453, 10091830, 14415652, 20356811, 28433339, 39302076, 53788873, 72923915, 97982798
Offset: 1

Views

Author

R. H. Hardin, Nov 23 2012

Keywords

Comments

Row 3 of A219595.

Examples

			Some solutions for n=3:
..1..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..1..1
..1..0..0....0..0..0....1..0..0....0..0..0....1..0..0....0..0..0....1..1..1
..2..1..0....2..2..1....0..0..0....1..1..1....1..0..0....1..1..0....2..2..2
		

Crossrefs

Cf. A219595.

Formula

Empirical: a(n) = (1/181440)*n^9 - (1/8064)*n^8 + (11/3780)*n^7 - (107/2880)*n^6 + (749/1728)*n^5 - (1943/1152)*n^4 + (168241/90720)*n^3 + (355057/10080)*n^2 - (306913/2520)*n + 137 for n>3.
Conjectures from Colin Barker, Jul 26 2018: (Start)
G.f.: x*(6 - 39*x + 144*x^2 - 382*x^3 + 740*x^4 - 1009*x^5 + 933*x^6 - 554*x^7 + 195*x^8 - 32*x^9 - 5*x^10 + 7*x^11 - 2*x^12) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>13.
(End)