cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219597 Number of 4Xn arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 4Xn array.

This page as a plain text file.
%I A219597 #6 Jul 23 2025 00:34:11
%S A219597 10,46,264,1114,4152,14793,51122,170728,550156,1714425,5181670,
%T A219597 15217623,43453991,120646669,325663378,854806408,2182941966,
%U A219597 5428211529,13157408701,31124038143,71939605189,162674579688,360302418944
%N A219597 Number of 4Xn arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 4Xn array.
%C A219597 Row 4 of A219595
%H A219597 R. H. Hardin, <a href="/A219597/b219597.txt">Table of n, a(n) for n = 1..143</a>
%F A219597 Empirical: a(n) = (1/32315020923606220800000)*n^25 - (109/11079435745236418560000)*n^24 + (2143/1292600836944248832000)*n^23 - (79003/421500272916602880000)*n^22 + (50173/3193183885731840000)*n^21 - (44960737/43792236147179520000)*n^20 + (27515689/510909421717094400)*n^19 - (60384781/26191528796160000)*n^18 + (21813448039/268899695640576000)*n^17 - (2221068910103/949057749319680000)*n^16 + (9482825036023/173993920708608000)*n^15 - (91557547148539/93211028951040000)*n^14 + (5251971236010727/434984801771520000)*n^13 - (62481716542887379/1491376463216640000)*n^12 - (9282784846386031/3954407288832000)*n^11 + (4293029543793101017/59316109332480000)*n^10 - (105931313393469849253/84031154887680000)*n^9 + (202993929290792591407/13095764398080000)*n^8 - (3712306914099958615759/26609865714432000)*n^7 + (11336104215245400553903/12671364625920000)*n^6 - (369076146776783247776693/101634903770400000)*n^5 + (41196192835097343490679/9034213668480000)*n^4 + (15522433799255326230017/346311523958400)*n^3 - (23040269972514059058427/74209612276800)*n^2 + (112252070661045629/127481640)*n - 1011429662 for n>12
%e A219597 Some solutions for n=3
%e A219597 ..0..0..0....0..0..0....1..0..0....0..0..0....1..0..0....0..0..0....0..0..0
%e A219597 ..0..0..0....1..0..0....1..0..0....1..0..0....0..0..0....2..0..0....1..0..0
%e A219597 ..0..0..0....0..0..0....1..1..0....1..1..0....2..0..0....2..1..0....1..0..0
%e A219597 ..1..1..0....0..0..0....1..1..2....1..2..2....2..2..1....2..1..1....1..1..0
%K A219597 nonn
%O A219597 1,1
%A A219597 _R. H. Hardin_ Nov 23 2012