This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A219654 #7 Nov 25 2012 23:56:30 %S A219654 1,1,2,2,2,4,4,4,4,2,4,4,4,4,6,4,4,4,6,6,6,6,6,6,6,6,8,4,2,4,4,4,4,6, %T A219654 4,4,4,6,6,6,6,6,6,6,6,8,6,8,8,6,4,4,4,6,6,6,6,6,6,6,6,8,6,8,8,6,8,10, %U A219654 6,6,6,6,6,6,6,8,6,8,8,6,8,10,8,10,12,6 %N A219654 Run lengths in A219652. %C A219654 a(n) tells from how many starting values one can end to 0 in n steps, with the iterative process described in A219652 (if going around in 0->0 loop is disallowed). %H A219654 A. Karttunen, <a href="/A219654/b219654.txt">Table of n, a(n) for n = 0..10080</a> %F A219654 a(n) = A219653(n+1)-A219653(n). (The first differences of A219653). %o A219654 (Scheme with two different variants): %o A219654 (define (A219654 n) (- (A219653 (1+ n)) (A219653 n))) %o A219654 (define (A219654v2 n) (1+ (- (A219655 n) (A219653 n)))) %Y A219654 a(n) = 1+(A219655(n)-A219653(n)). This sequence is based on Factorial number system: A007623. Analogous sequence for binary system: A086876, for Zeckendorf expansion: A219644. Cf. A219652, A219659, A219666. %K A219654 nonn %O A219654 0,3 %A A219654 _Antti Karttunen_, Nov 25 2012