cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219655 Greatest inverse of A219652; a(n) = maximal i such that A219652(i) = n.

This page as a plain text file.
%I A219655 #10 Nov 25 2012 23:57:50
%S A219655 0,1,3,5,7,11,15,19,23,25,29,33,37,41,47,51,55,59,65,71,77,83,89,95,
%T A219655 101,107,115,119,121,125,129,133,137,143,147,151,155,161,167,173,179,
%U A219655 185,191,197,203,211,217,225,233,239,243,247,251,257,263,269,275,281
%N A219655 Greatest inverse of A219652; a(n) = maximal i such that A219652(i) = n.
%H A219655 A. Karttunen, <a href="/A219655/b219655.txt">Table of n, a(n) for n = 0..10080</a>
%F A219655 a(n) = A219653(n) + A219654(n) - 1.
%o A219655 (Scheme with _Antti Karttunen_'s Intseq-library, three different variants):
%o A219655 (define A219655 (PARTIALSUMS 1 0 (compose-funs A219654 1+)))
%o A219655 (define A219655v2 (compose-funs -1+ (LEAST-I-WITH-FUN-I-EQ-N 0 0 A219652) 1+)) ;; Slow!
%o A219655 (define (A219655v3 n) (+ (A219653 n) (A219654 n) -1))
%Y A219655 Cf. A219653 for the least inverse. A219654 gives the first differences.
%Y A219655 This sequence is based on factorial number system: A007623. Analogous sequence for binary system: A173601, for Zeckendorf expansion: A219645.
%K A219655 nonn
%O A219655 0,3
%A A219655 _Antti Karttunen_, Nov 25 2012