cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219673 a(n) = Sum_{k=0..n} binomial(n,k)^2*Lucas(k) where Lucas(n) = A000032(n).

This page as a plain text file.
%I A219673 #17 Feb 16 2025 08:33:18
%S A219673 2,3,9,42,197,913,4302,20611,99773,486438,2385319,11752931,58139858,
%T A219673 288572079,1436398329,7167499522,35842352013,179576501169,
%U A219673 901226053422,4529717794607,22797936691207,114881558737498,579544350869889,2926592507364717,14792448049794122
%N A219673 a(n) = Sum_{k=0..n} binomial(n,k)^2*Lucas(k) where Lucas(n) = A000032(n).
%H A219673 Vincenzo Librandi, <a href="/A219673/b219673.txt">Table of n, a(n) for n = 0..200</a>
%H A219673 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LegendrePolynomial.html">Legendre Polynomial</a>.
%F A219673 G.f.: 1/sqrt(1 - (3 + sqrt(5))*x + (3 - sqrt(5))/2*x^2) + 1/sqrt(1 - (3 - sqrt(5))*x + (3 + sqrt(5))/2*x^2).
%F A219673 a(n) ~ (1+sqrt(5))/4*sqrt((6-2*sqrt(5)+sqrt(2*sqrt(5)-2))/(2*Pi*n)) * ((3+sqrt(5))/2+sqrt(2+2*sqrt(5)))^n.
%F A219673 Recurrence (same as for A219672): (n-1)*n*(13*n^2 - 52*n + 49)*a(n) = 3*(n-1)*(2*n-5)*(13*n^2 - 26*n + 10)*a(n-1) - (7*n^2-14*n+6)*(13*n^2 - 52*n + 49)*a(n-2) + (n-2)*(182*n^3 - 819*n^2 + 1050*n - 351)*a(n-3) - (n-3)*(n-2)*(13*n^2 - 26*n + 10)*a(n-4).
%F A219673 a(n) = hypergeom([-n,-n], [1], phi) + hypergeom([-n,-n], [1], 1-phi) = phi^n * P_n(sqrt(5)-2) + (1-phi)^n * P_n(-sqrt(5)-2), where phi = (1+sqrt(5))/2, P_n(x) is the Legendre polynomial. - _Vladimir Reshetnikov_, Sep 28 2016
%t A219673 Table[Sum[Binomial[n, k]^2*LucasL[k], {k, 0, n}], {n, 0, 20}]
%t A219673 FullSimplify@Table[GoldenRatio^n LegendreP[n, Sqrt[5] - 2] + (1 - GoldenRatio)^n LegendreP[n, -Sqrt[5] - 2], {n, 0, 20}] (* _Vladimir Reshetnikov_, Sep 28 2016 *)
%Y A219673 Cf. A000032, A005248, A219672.
%K A219673 nonn
%O A219673 0,1
%A A219673 _Vaclav Kotesovec_, Nov 24 2012