cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A220051 Sum_{k=0..14} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32767, 65519, 130918, 261156, 519252, 1026876, 2014992, 3913704, 7507638, 14198086, 26434916, 48412432, 87167164, 154276028, 268435456, 459312152, 773201629, 1281220733, 2091005866
Offset: 0

Views

Author

Mokhtar Mohamed, Dec 03 2012

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into fifteen or fewer parts.
a(n) = sum(binomial(n+1,2k), for k = 0..7).
a(n) is the sum of the first fifteen terms in the n-th row of Pascal's triangle.

Examples

			a(15) = 32767 because there are 2^15 = 32768 compositions of 16 into any size parts but one of the compositions (1 + 1 + ... + 1 = 16) has more than fifteen parts.
When 1 <= n <= 14, for n=10, a(10) = 2*a(9) = 2*512 = 1024. For n=14, a(14) = 2*a(13) = 2*8192 = 16384.
When n > 14, for n = 15, a(15) = 2*a(14) -C(14,14) = 2*16384 -1 = 32767. For n=20, a(20) = 2*a(19) -C(19,14) = 2*519252 -11626 = 1038504 -11626 = 1026876.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k],{k,0,14}],{n,0,33}] (* Indranil Ghosh, Feb 22 2017 *)
    NestList[{#1 + 1, 2 #2 - Boole[#1 >= 14] Binomial[#1, 14]} & @@ # &, {0, 1}, 33][[All, -1]] (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    a(n)=sum(k=0,14,binomial(n,k)) \\ Indranil Ghosh, Feb 23 2017

Formula

a(n) = 1 + (n^14 - 77*n^13 + 2821*n^12 - 6288*n^11 + 947947*n^10 - 10081071*n^9 + 77889383*n^8 - 435638203*n^7 + 1793239448*n^6 - 5043110072*n^5 + 1111159696*n^4 - 8346754416*n^3 + 30605906304*n^2 + 57424792320*n)/14!.
G.f.: (1 - 13x + 79x^2 - 297x^3 + 771x^4 - 1461x^5 + 2083x^6 - 2269x^7 + 1897x^8 - 1211x^9 + 581x^10 - 203x^11 + 49x^12 - 7x^13 + x^14)/(1-x)^15.
a(n) = 2*a(n-1), for 1 <= n <= 14, with a(0) = 1, a(n) = 2*a(n-1) - C(n-1,14), for n> 14.
Showing 1-1 of 1 results.