cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219688 Number of 4Xn arrays of the minimum value of corresponding elements and their horizontal, vertical or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 4Xn array.

This page as a plain text file.
%I A219688 #6 Jul 23 2025 00:36:36
%S A219688 10,19,99,427,1531,5031,15763,47784,140586,401745,1116450,3022129,
%T A219688 7979699,20573716,51835099,127704345,307858090,726741861,1681297548,
%U A219688 3815152314,8498764539,18601381870,40034714647,84794977698,176874740063
%N A219688 Number of 4Xn arrays of the minimum value of corresponding elements and their horizontal, vertical or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 4Xn array.
%C A219688 Row 4 of A219686
%H A219688 R. H. Hardin, <a href="/A219688/b219688.txt">Table of n, a(n) for n = 1..125</a>
%F A219688 Empirical: a(n) = (1/71811157608013824000000)*n^25 - (101/17234677825923317760000)*n^24 + (5449/4308669456480829440000)*n^23 - (68021/374666909259202560000)*n^22 + (9824237/510909421717094400000)*n^21 - (21583/13610640605184000)*n^20 + (5371647499/51090942171709440000)*n^19 - (394323599/68948639907840000)*n^18 + (45438295453/175751435059200000)*n^17 - (16515462281/1687213776568320)*n^16 + (542084002355513/1739939207086080000)*n^15 - (28192245777209/3381806039040000)*n^14 + (3250324207416831463/17399392070860800000)*n^13 - (1612171294329183241/463983788556288000)*n^12 + (2781152508058068181/52725430517760000)*n^11 - (757894220102779469/1198305239040000)*n^10 + (37334585059613913334793/6722492391014400000)*n^9 - (107120698751683891/3939922280448)*n^8 - (79214526965365782185939/798295971432960000)*n^7 + (49706772664271871813409/13646084981760000)*n^6 - (2005940155459581015843920483/48784753809792000000)*n^5 + (15777623834516738464154783/54205282010880000)*n^4 - (17331604984082844755616061/12467214862502400)*n^3 + (215362834119633956818141/49473074851200)*n^2 - (4207251609878775049/524924400)*n + 6438609162 for n>14
%e A219688 Some solutions for n=3
%e A219688 ..1..1..0....2..0..0....0..0..0....1..1..0....2..1..1....1..0..0....1..0..0
%e A219688 ..1..0..0....2..0..0....0..0..0....1..0..0....2..1..1....1..0..0....1..0..0
%e A219688 ..2..0..0....2..1..1....1..0..0....1..0..0....2..2..2....1..0..0....1..1..1
%e A219688 ..2..1..1....2..1..1....1..2..2....2..2..2....2..2..2....2..1..1....1..1..1
%K A219688 nonn
%O A219688 1,1
%A A219688 _R. H. Hardin_ Nov 25 2012