cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219730 Sum_{x <= n} smallest divisor of x that is >= sqrt(x).

This page as a plain text file.
%I A219730 #38 Mar 24 2025 06:13:48
%S A219730 1,3,6,8,13,16,23,27,30,35,46,50,63,70,75,79,96,102,121,126,133,144,
%T A219730 167,173,178,191,200,207,236,242,273,281,292,309,316,322,359,378,391,
%U A219730 399,440,447,490,501,510,533,580,588,595,605,622,635,688,697,708,716
%N A219730 Sum_{x <= n} smallest divisor of x that is >= sqrt(x).
%C A219730 G. Tenenbaum proved that a(n) is asymptotically equal to (Pi^2/12)*n^2/log(n) (Théorème 2).
%H A219730 Robert Israel, <a href="/A219730/b219730.txt">Table of n, a(n) for n = 1..10000</a>
%H A219730 Steven Finch, <a href="/A219729/a219729.pdf">Multiples and divisors</a>, January 27, 2004. [Cached copy, with permission of the author]
%H A219730 Gérald Tenenbaum, <a href="https://doi.org/10.1112/jlms/s2-14.3.521">Sur deux fonctions de diviseurs</a>, J. London Math. Soc. (1976) s2-14 (3): 521-526; <a href="https://tenenb.perso.math.cnrs.fr/PPP/Deux-fns.pdf">alternative copy</a>.
%p A219730 g:= proc(n) min(select(t -> t^2 >= n, numtheory:-divisors(n))) end proc:
%p A219730 ListTools:-PartialSums(map(g, [$1..100])); # _Robert Israel_, Nov 22 2024
%t A219730 Accumulate[Table[First[Select[Divisors[n],#>=Sqrt[n]&]],{n,56}]] (* _James C. McMahon_, Jun 18 2024 *)
%Y A219730 Cf. A033677, A219729.
%K A219730 nonn
%O A219730 1,2
%A A219730 _Michel Marcus_, Nov 26 2012