A219733 Decimal expansion of Sum_{n >= 1} 1/p(n), where p(n) is the product of numbers n^2 + 1 to (n+1)^2 - 1.
1, 6, 7, 2, 6, 2, 1, 8, 2, 2, 9, 5, 9, 0, 5, 8, 0, 9, 8, 7, 8, 6, 3, 8, 8, 2, 0, 5, 6, 8, 9, 1, 5, 8, 2, 6, 3, 6, 3, 4, 2, 6, 2, 2, 1, 0, 2, 2, 0, 4, 1, 9, 3, 0, 8, 0, 8, 5, 4, 2, 8, 1, 6, 3, 5, 1, 6, 1, 0, 2, 7, 6, 0, 0, 2, 0, 9, 0, 8, 9, 6, 8, 0, 9, 1, 3, 2, 0, 0, 5, 4, 5, 3, 5, 4, 5, 2, 7, 7, 3, 9, 1, 8, 0, 7
Offset: 0
Examples
0.16726218229590580987863882056891582636342622102204...
Crossrefs
Cf. A219734.
Programs
-
Maple
evalf(Sum(GAMMA(n^2+1)/GAMMA((n+1)^2), n=1..infinity), 120); # Vaclav Kotesovec, Mar 01 2016
-
Mathematica
NSum[1/(Pochhammer[m^2 + 1, 2 m]), {m, 1, Infinity}, WorkingPrecision -> 105]
Comments