A219791
Number of ways to write n=x+y (0
0, 1, 1, 1, 2, 0, 2, 1, 2, 2, 2, 2, 2, 2, 5, 0, 2, 1, 2, 2, 4, 2, 4, 0, 6, 2, 6, 2, 5, 3, 6, 3, 5, 4, 7, 3, 6, 2, 5, 6, 6, 1, 6, 5, 4, 1, 6, 2, 7, 5, 5, 2, 9, 3, 8, 4, 8, 3, 6, 6, 4, 3, 9, 4, 13, 4, 9, 4, 5, 9, 2, 1, 11, 4, 14, 4, 10, 3, 9, 8, 4, 3, 6, 5, 10, 3
Offset: 1
Keywords
Examples
a(8)=1 since 8=4+4 with (4*4)^2+1=257 prime. a(9)=2 since 9=2+7=4+5, and (2*7)^2+1=197 and (4*5)^2+1=401 are prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, An amazing conjecture on primes, a message to Number Theory List, Nov. 27, 2012.
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588.
Programs
-
Mathematica
a[n_] := a[n] = Sum[If[PrimeQ[(k(n-k))^2+1] == True, 1, 0], {k, n/2}]; Do[Print[n, " ", a[n]], {n, 100}]
Comments