cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219791 Number of ways to write n=x+y (0

Original entry on oeis.org

0, 1, 1, 1, 2, 0, 2, 1, 2, 2, 2, 2, 2, 2, 5, 0, 2, 1, 2, 2, 4, 2, 4, 0, 6, 2, 6, 2, 5, 3, 6, 3, 5, 4, 7, 3, 6, 2, 5, 6, 6, 1, 6, 5, 4, 1, 6, 2, 7, 5, 5, 2, 9, 3, 8, 4, 8, 3, 6, 6, 4, 3, 9, 4, 13, 4, 9, 4, 5, 9, 2, 1, 11, 4, 14, 4, 10, 3, 9, 8, 4, 3, 6, 5, 10, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 28 2012

Keywords

Comments

Conjecture: a(n)>0 if n is different from 1, 6, 16, 24.
This conjecture has been verified for n up to 10^7. It implies that there are infinitely many primes of the form x^2+1.
Zhi-Wei Sun also made the following general conjecture: For any positive integer k, each sufficiently large integer n cna be written as x+y (x>0, y>0) with (xy)^{2^k}+1 prime.
For example, for k=2,3,4 it suffices to require that n is greater than 22, 386, 748 respectively.

Examples

			a(8)=1 since 8=4+4 with (4*4)^2+1=257 prime.
a(9)=2 since 9=2+7=4+5, and (2*7)^2+1=197 and (4*5)^2+1=401 are prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[If[PrimeQ[(k(n-k))^2+1] == True, 1, 0], {k, n/2}]; Do[Print[n, " ", a[n]], {n, 100}]