This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A219836 #19 Feb 04 2020 16:57:35 %S A219836 1,2,0,4,4,1,8,24,12,0,16,104,120,24,1,32,392,896,480,54,0,64,1368, %T A219836 5544,5984,1764,108,1,128,4552,30384,57640,34520,6048,224,0,256,14680, %U A219836 153400,470504,495320,180416,19936,448,1 %N A219836 Triangular array counting derangements by number of descents. %C A219836 T(n,k) is the number of derangements of [n] with k descents. %H A219836 Shishuo Fu, Z. Lin, J. Zeng, <a href="http://arxiv.org/abs/1507.05184">Two new unimodal descent polynomials</a>, arXiv preprint arXiv:1507.05184 [math.CO], 2015-2019. %F A219836 The g.f. F(x,y) = Sum_{n>=2,1<=k<=n-1}T(n,k)x^n/n!y^k satisfies the partial differential equation (1-xy) D_{x}F + (y^2-y) D_{y}F = F + 1 - e^(-xy). (Is there a closed form solution?) %e A219836 Array begins %e A219836 1 %e A219836 2, 0 %e A219836 4, 4, 1 %e A219836 8, 24, 12, 0 %e A219836 16, 104, 120, 24, 1 %e A219836 T(4,2) = 4 counts 2143, 3142, 3421, 4312. %t A219836 u[n_, 0] := 0; u[n_, k_] /; k == n-1 := If [EvenQ[n], 1, 0]; u[n_, k_] /; 1 <= k <= n - 2 := (n - k) u[n - 1, k - 1] + (k + 1) u[n - 1, k]; Table[u[n, k], {n, 2, 10}, {k, n - 1}] %Y A219836 Cf. A008292. (analogous for permutations) %Y A219836 Row sums give A000166. A046739 counts derangements of [n] by number of excedances. %K A219836 nonn,tabl %O A219836 2,2 %A A219836 _David Callan_, Nov 29 2012