This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A219866 #47 Mar 30 2025 10:56:07 %S A219866 1,1,1,1,0,1,1,1,1,1,1,1,2,1,1,1,1,4,4,1,1,1,2,7,14,7,2,1,1,2,15,41, %T A219866 41,15,2,1,1,3,30,143,184,143,30,3,1,1,4,60,472,1069,1069,472,60,4,1, %U A219866 1,5,123,1562,5624,9612,5624,1562,123,5,1 %N A219866 Number A(n,k) of tilings of a k X n rectangle using dominoes and straight (3 X 1) trominoes; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A219866 Liang Kai, <a href="/A219866/b219866.txt">Antidiagonals n = 0..35, flattened</a> (0..22 from Alois P. Heinz) %H A219866 Kai Liang, <a href="https://arxiv.org/abs/2503.17698">Solving tiling enumeration problems by tensor network contractions</a>, arXiv:2503.17698 [math.CO], 2025. See p. 25, Table 4. %e A219866 A(2,3) = A(3,2) = 4, because there are 4 tilings of a 3 X 2 rectangle using dominoes and straight (3 X 1) trominoes: %e A219866 .___. .___. .___. .___. %e A219866 | | | |___| | | | |___| %e A219866 | | | |___| |_|_| | | | %e A219866 |_|_| |___| |___| |_|_| %e A219866 Square array A(n,k) begins: %e A219866 1, 1, 1, 1, 1, 1, 1, 1, ... %e A219866 1, 0, 1, 1, 1, 2, 2, 3, ... %e A219866 1, 1, 2, 4, 7, 15, 30, 60, ... %e A219866 1, 1, 4, 14, 41, 143, 472, 1562, ... %e A219866 1, 1, 7, 41, 184, 1069, 5624, 29907, ... %e A219866 1, 2, 15, 143, 1069, 9612, 82634, 707903, ... %e A219866 1, 2, 30, 472, 5624, 82634, 1143834, 15859323, ... %e A219866 1, 3, 60, 1562, 29907, 707903, 15859323, 354859954, ... %p A219866 b:= proc(n, l) option remember; local k, t; %p A219866 if max(l[])>n then 0 elif n=0 or l=[] then 1 %p A219866 elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l)) %p A219866 else for k do if l[k]=0 then break fi od; %p A219866 b(n, subsop(k=3, l))+ b(n, subsop(k=2, l))+ %p A219866 `if`(k<nops(l) and l[k+1]=0, b(n, subsop(k=1, k+1=1, l)), 0)+ %p A219866 `if`(k+1<nops(l) and l[k+1]=0 and l[k+2]=0, %p A219866 b(n, subsop(k=1, k+1=1, k+2=1, l)), 0) %p A219866 fi %p A219866 end: %p A219866 A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n])): %p A219866 seq(seq(A(n, d-n), n=0..d), d=0..10); %t A219866 b[n_, l_] := b[n, l] = Module[{k, t}, If [Max[l] > n, 0, If[ n == 0 || l == {}, 1, If[Min[l] > 0, t = Min[l]; b[n-t, l-t], k = Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k -> 3]] + b[n, ReplacePart[l, k -> 2]] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1}]], 0] + If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1, k+2 -> 1}]], 0]]]]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* _Jean-François Alcover_, Dec 16 2013, translated from Maple *) %Y A219866 Columns (or rows) k=0-10 give: A000012, A000931(n+3), A129682, A219867, A219862, A219868, A219869, A219870, A219871, A219872, A219873. %Y A219866 Main diagonal gives: A219874. %Y A219866 Cf. A219987, A364457. %K A219866 nonn,tabl %O A219866 0,13 %A A219866 _Alois P. Heinz_, Nov 30 2012