cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219874 Number of tilings of an n X n square using dominoes and straight (3 X 1) trominoes.

This page as a plain text file.
%I A219874 #29 Mar 30 2025 10:54:31
%S A219874 1,0,2,14,184,9612,1143834,354859954,295743829064,631206895803116,
%T A219874 3541054185616706122,51821077154605344550820,
%U A219874 1976225122734369352127065686,196913655491597719598898811003348,51179690353659852099434654264900753288,34716223657627061096793572212632925410608268
%N A219874 Number of tilings of an n X n square using dominoes and straight (3 X 1) trominoes.
%H A219874 Kai Liang, <a href="https://arxiv.org/abs/2503.17698">Solving tiling enumeration problems by tensor network contractions</a>, arXiv:2503.17698 [math.CO], 2025. See p. 25, Table 4.
%e A219874 a(3) = 14, because there are 14 tilings of a 3 X 3 square using dominoes and straight (3 X 1) trominoes:
%e A219874   ._____. ._____. ._____. ._____. .___._. .___._. .___._.
%e A219874   | | | | | | | | | |___| | |___| | | | | |___| | |___| |
%e A219874   | | | | | |_|_| | |___| | | | | |_|_| | |___| | | | | |
%e A219874   |_|_|_| |_|___| |_|___| |_|_|_| |___|_| |___|_| |_|_|_|
%e A219874   ._____. ._____. ._____. ._____. ._____. ._____. ._____.
%e A219874   |_____| |_____| |_____| |_____| | |___| | | | | |___| |
%e A219874   |_____| | |___| | | | | |___| | |_|___| |_|_|_| |___|_|
%e A219874   |_____| |_|___| |_|_|_| |___|_| |_____| |_____| |_____|  .
%Y A219874 Main diagonal of A219866.
%Y A219874 Cf. A233807, A364504.
%K A219874 nonn
%O A219874 0,3
%A A219874 _Alois P. Heinz_, Nov 30 2012
%E A219874 a(12) from _Alois P. Heinz_, Sep 30 2014
%E A219874 a(13)-a(15) (using _Liang Kai_'s terms in A219866) from _Alois P. Heinz_, Mar 12 2025