cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219879 Number of nX4 arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX4 array.

This page as a plain text file.
%I A219879 #6 Jul 23 2025 00:45:32
%S A219879 10,17,129,621,2645,10350,40239,155199,581728,2085519,7121374,
%T A219879 23225035,72683520,219218974,639377404,1808073511,4967931875,
%U A219879 13286469360,34640551307,88162618939,219292820124,533661457600,1271821824645
%N A219879 Number of nX4 arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX4 array.
%C A219879 Column 4 of A219883
%H A219879 R. H. Hardin, <a href="/A219879/b219879.txt">Table of n, a(n) for n = 1..210</a>
%F A219879 Empirical: a(n) = (1/1105220249217462744317952000000)*n^29 + (1/38111043076464232562688000000)*n^28 - (1/201645730563302817792000000)*n^27 + (389/604937191689908453376000000)*n^26 - (307/46533630129992957952000000)*n^25 - (773/404640261999938764800000)*n^24 + (40878821/195441246545970423398400000)*n^23 - (70069501/8497445501998714060800000)*n^22 + (12139/477733485241958400000)*n^21 + (50109247/2829652181817753600000)*n^20 - (445566582679/404640261999938764800000)*n^19 + (737417025883/21296855894733619200000)*n^18 - (2216933583028729/5814041659262278041600000)*n^17 - (6268242075250621/342002450544839884800000)*n^16 + (18619463335254179/16285830978325708800000)*n^15 - (536852810288080877/16285830978325708800000)*n^14 + (1152350125136381123/2129685589473361920000)*n^13 - (24885562289413355029/10648427947366809600000)*n^12 - (39408208806540972298007/289685642113592524800000)*n^11 + (1255759711529881816639841/289685642113592524800000)*n^10 - (4460229918485515193847251/63225040937490432000000)*n^9 + (370772167856232917329483/540384965277696000000)*n^8 - (39409170362295331975190999/13464592051502592000000)*n^7 - (280106596148918041437854963/13464592051502592000000)*n^6 + (23189350672718808866722526453/51053244861947328000000)*n^5 - (379821968293133120568499603/102106489723894656000)*n^4 + (3496996713409130344932041/202592241515664000)*n^3 - (3708578246594560887479/83889126921600)*n^2 + (35941859372224430069/776363187600)*n + 10128532 for n>12
%e A219879 Some solutions for n=3
%e A219879 ..1..0..0..0....0..0..0..0....2..0..0..0....1..1..0..1....2..1..1..1
%e A219879 ..1..0..0..0....0..0..0..0....2..0..0..0....1..0..0..0....2..1..1..1
%e A219879 ..1..1..0..0....1..1..0..1....2..2..0..2....1..0..0..0....2..2..1..1
%K A219879 nonn
%O A219879 1,1
%A A219879 _R. H. Hardin_ Nov 30 2012