cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219884 Number of 3 X n arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 3 X n array.

Original entry on oeis.org

10, 21, 47, 129, 292, 600, 1158, 2148, 3863, 6784, 11679, 19763, 32938, 54144, 87860, 140803, 222883, 348483, 538145, 820756, 1236342, 1839593, 2704258, 3928566, 5641847, 8012546, 11257843, 15655113, 21555482, 29399758, 39737040, 53246333
Offset: 1

Views

Author

R. H. Hardin, Nov 30 2012

Keywords

Comments

Row 3 of A219883.

Examples

			Some solutions for n=3:
..1..0..0....1..0..0....0..0..0....0..0..0....1..1..1....1..0..0....0..0..0
..1..0..1....1..0..1....0..0..0....0..0..0....1..0..1....1..0..0....0..0..0
..2..1..2....1..0..0....2..2..2....2..1..2....1..0..0....1..0..1....0..1..0
		

Crossrefs

Cf. A219883.

Formula

Empirical: a(n) = (1/362880)*n^9 - (1/13440)*n^8 + (17/12096)*n^7 - (37/2880)*n^6 + (1813/17280)*n^5 + (1579/5760)*n^4 - (76849/9072)*n^3 + (768487/10080)*n^2 - (590021/2520)*n + 217 for n>6.
Conjectures from Colin Barker, Jul 28 2018: (Start)
G.f.: x*(10 - 79*x + 287*x^2 - 596*x^3 + 697*x^4 - 265*x^5 - 504*x^6 + 984*x^7 - 895*x^8 + 565*x^9 - 351*x^10 + 273*x^11 - 206*x^12 + 112*x^13 - 36*x^14 + 5*x^15) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>16.
(End)