This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A219924 #40 Sep 05 2021 18:20:49 %S A219924 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,3,1,1,1,1,5,6,5,1,1,1,1,8,13,13, %T A219924 8,1,1,1,1,13,28,40,28,13,1,1,1,1,21,60,117,117,60,21,1,1,1,1,34,129, %U A219924 348,472,348,129,34,1,1,1,1,55,277,1029,1916,1916,1029,277,55,1,1 %N A219924 Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A219924 For drawings of A(1,1), A(2,2), ..., A(5,5) see A224239. %H A219924 Alois P. Heinz, <a href="/A219924/b219924.txt">Antidiagonals n = 0..30, flattened</a> %H A219924 Steve Butler, Jason Ekstrand, Steven Osborne, <a href="https://doi.org/10.1007/978-3-030-37853-0_5">Counting Tilings by Taking Walks in a Graph</a>, A Project-Based Guide to Undergraduate Research in Mathematics, Birkhäuser, Cham (2020), see page 169. %e A219924 A(3,3) = 6, because there are 6 tilings of a 3 X 3 rectangle using integer-sided squares: %e A219924 ._____. ._____. ._____. ._____. ._____. ._____. %e A219924 | | | |_| |_| | |_|_|_| |_|_|_| |_|_|_| %e A219924 | | |___|_| |_|___| |_| | | |_| |_|_|_| %e A219924 |_____| |_|_|_| |_|_|_| |_|___| |___|_| |_|_|_| %e A219924 Square array A(n,k) begins: %e A219924 1, 1, 1, 1, 1, 1, 1, 1, ... %e A219924 1, 1, 1, 1, 1, 1, 1, 1, ... %e A219924 1, 1, 2, 3, 5, 8, 13, 21, ... %e A219924 1, 1, 3, 6, 13, 28, 60, 129, ... %e A219924 1, 1, 5, 13, 40, 117, 348, 1029, ... %e A219924 1, 1, 8, 28, 117, 472, 1916, 7765, ... %e A219924 1, 1, 13, 60, 348, 1916, 10668, 59257, ... %e A219924 1, 1, 21, 129, 1029, 7765, 59257, 450924, ... %p A219924 b:= proc(n, l) option remember; local i, k, s, t; %p A219924 if max(l[])>n then 0 elif n=0 or l=[] then 1 %p A219924 elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l)) %p A219924 else for k do if l[k]=0 then break fi od; s:=0; %p A219924 for i from k to nops(l) while l[i]=0 do s:=s+ %p A219924 b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)]) %p A219924 od; s %p A219924 fi %p A219924 end: %p A219924 A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n])): %p A219924 seq(seq(A(n, d-n), n=0..d), d=0..14); %p A219924 # The following is a second version of the program that lists the actual dissections. It produces a list of pairs for each dissection: %p A219924 b:= proc(n, l, ll) local i, k, s, t; %p A219924 if max(l[])>n then 0 elif n=0 or l=[] then lprint(ll); 1 %p A219924 elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l), ll) %p A219924 else for k do if l[k]=0 then break fi od; s:=0; %p A219924 for i from k to nops(l) while l[i]=0 do s:=s+ %p A219924 b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)], %p A219924 [ll[],[k,1+i-k]]) %p A219924 od; s %p A219924 fi %p A219924 end: %p A219924 A:= (n, k)-> b(k, [0$n], []): %p A219924 A(5,5); %p A219924 # In each list [a,b] means put a square with side length b at %p A219924 leftmost possible position with upper corner in row a. For example %p A219924 [[1,3], [4,2], [4,2], [1,2], [3,1], [3,1], [4,1], [5,1]], gives: %p A219924 ._____.___. %p A219924 | | | %p A219924 | |___| %p A219924 |_____|_|_| %p A219924 | | |_| %p A219924 |___|___|_| %t A219924 b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = 0; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1;; -1]] ] ] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, Dec 13 2013, translated from 1st Maple program *) %Y A219924 Columns (or rows) k=0+1, 2-10 give: A000012, A000045(n+1), A002478, A054856, A054857, A219925, A219926, A219927, A219928, A219929. %Y A219924 Main diagonal gives A045846. %Y A219924 Cf. A113881, A226545. %K A219924 nonn,tabl %O A219924 0,13 %A A219924 _Alois P. Heinz_, Dec 01 2012