This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A219926 #18 Sep 05 2021 19:19:46 %S A219926 1,1,21,129,1029,7765,59257,450924,3435392,26160354,199243634, %T A219926 1517411733,11556549312,88013947545,670309228276,5105035683160, %U A219926 38879655193542,296105186372225,2255119850966932,17174861374796123,130802743517191075,996186073044886758 %N A219926 Number of tilings of a 7 X n rectangle using integer-sided square tiles. %H A219926 Alois P. Heinz, <a href="/A219926/b219926.txt">Table of n, a(n) for n = 0..500</a> %F A219926 G.f.: see Maple program. %e A219926 a(2) = 21, because there are 21 tilings of a 7 X 2 rectangle using integer-sided square tiles: %e A219926 ._._. .___. ._._. ._._. ._._. ._._. ._._. .___. .___. .___. .___. %e A219926 |_|_| | | |_|_| |_|_| |_|_| |_|_| |_|_| | | | | | | | | %e A219926 |_|_| |___| | | |_|_| |_|_| |_|_| |_|_| |___| |___| |___| |___| %e A219926 |_|_| |_|_| |___| | | |_|_| |_|_| |_|_| | | |_|_| |_|_| |_|_| %e A219926 |_|_| |_|_| |_|_| |___| | | |_|_| |_|_| |___| | | |_|_| |_|_| %e A219926 |_|_| |_|_| |_|_| |_|_| |___| | | |_|_| |_|_| |___| | | |_|_| %e A219926 |_|_| |_|_| |_|_| |_|_| |_|_| |___| | | |_|_| |_|_| |___| | | %e A219926 |_|_| |_|_| |_|_| |_|_| |_|_| |_|_| |___| |_|_| |_|_| |_|_| |___| %e A219926 ._._. ._._. ._._. ._._. ._._. ._._. .___. .___. .___. ._._. %e A219926 |_|_| |_|_| |_|_| |_|_| |_|_| |_|_| | | | | | | |_|_| %e A219926 | | | | | | |_|_| |_|_| |_|_| |___| |___| |___| | | %e A219926 |___| |___| |___| | | | | |_|_| | | | | |_|_| |___| %e A219926 | | |_|_| |_|_| |___| |___| | | |___| |___| | | | | %e A219926 |___| | | |_|_| | | |_|_| |___| | | |_|_| |___| |___| %e A219926 |_|_| |___| | | |___| | | | | |___| | | | | | | %e A219926 |_|_| |_|_| |___| |_|_| |___| |___| |_|_| |___| |___| |___| %p A219926 gf:= -(6*x^18 -x^17 -9*x^16 +13*x^15 +20*x^14 -35*x^13 -47*x^12 -76*x^11 -145*x^10 -127*x^9 -8*x^8 +64*x^7 +96*x^6 +68*x^5 +7*x^4 -10*x^3 -13*x^2 -2*x +1) / (6*x^25 +11*x^24 -9*x^23 -10*x^22 +39*x^21 +12*x^20 -70*x^19 -281*x^18 -403*x^17 -110*x^16 -118*x^15 -790*x^14 -179*x^13 +466*x^12 +327*x^11 +669*x^10 +1028*x^9 +231*x^8 -45*x^7 -284*x^6 -273*x^5 -61*x^4 +45*x^3 +31*x^2 +3*x -1): %p A219926 a:= n-> coeff(series(gf, x, n+1), x, n): %p A219926 seq(a(n), n=0..30); %Y A219926 Column k=7 of A219924. %Y A219926 Cf. A226550. %K A219926 nonn,easy %O A219926 0,3 %A A219926 _Alois P. Heinz_, Dec 01 2012