This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A219930 #45 Aug 09 2015 16:03:00 %S A219930 1,3,8,14,20,36,48,66,70,96,126,132,156,240,252,300,336,450,480,540, %T A219930 660,690,714,870,900,1080,1320,1470,1530,1710,1950,2340,2940,2970, %U A219930 3360,3780,4200,4830,5040,5610,5670,5880,6270,7140,7350,7410,8400,9660,9870 %N A219930 n such that phi(n) represents a new lower bound for the phi function. %C A219930 Conjecture: If n is in the sequence, then the sequence contains an infinite number of multiples of n. %C A219930 Conjecture: Except for 1 and 3, all members of the sequence are even. If n is odd, it cannot be squarefree. %C A219930 Conjecture: There does not exist N such that for all n > N, a(n) is divisible by 30. %C A219930 A036912 gives the values of the phi function at these n. %H A219930 Vincenzo Librandi, <a href="/A219930/b219930.txt">Table of n, a(n) for n = 1..200</a> %e A219930 phi(1)=1, and for n>=1, phi(n)>=1. %e A219930 phi(3)=2, and for n>=3, phi(n)>=2. %e A219930 phi(8)=4, and for n>=8, phi(n)>=4. %e A219930 phi(14)=6, and for n>=14, phi(n)>=6. %t A219930 nn = 8!; t = Table[EulerPhi[n], {n, nn}]; min = Infinity; t2 = {}; Do[If[t[[n]] <= min, AppendTo[t2, {n, t[[n]]}]; min = t[[n]]], {n, Length[t], 1, -1}]; t2 = Reverse[t2]; t3 = {}; mx = 0; Do[If[i[[2]] > mx, mx = i[[2]]; AppendTo[t3, i[[1]]]], {i, t2}]; t3 (* _T. D. Noe_, Dec 04 2012 *) %o A219930 (JavaScript) %o A219930 p = new Array(); %o A219930 p[0] = NaN; %o A219930 p[1] = 2; %o A219930 p[2] = 3; %o A219930 mj = 2; %o A219930 for (k = 3; k < 50000; k += 2) makeprimes(k); %o A219930 function makeprimes(i) { %o A219930 for (j = 2; j <= mj; j++) %o A219930 if (i%p[j] == 0) return false; %o A219930 p[++mj] = i; %o A219930 return true; %o A219930 } %o A219930 function primeFactorize(n) { %o A219930 var pf = new Array(), pc, pfc; %o A219930 pf[0] = new Array(); %o A219930 pf[1] = new Array(); %o A219930 pc = 1; %o A219930 pfc = -1; %o A219930 while (n != 1) { %o A219930 if (n%p[pc] == 0) {pfc++; pf[0][pfc] = p[pc]; pf[1][pfc] = 0;} %o A219930 while (n%p[pc] == 0) {n /= p[pc]; pf[1][pfc]++;} %o A219930 pc++; %o A219930 } %o A219930 return pf; %o A219930 } %o A219930 function phi(n) { %o A219930 var f, i, v; %o A219930 v = 1; %o A219930 f = primeFactorize(n); %o A219930 for (i = 0; i < f[0].length; i++) v *= Math.pow(f[0][i], f[1][i] - 1)*(f[0][i] - 1); %o A219930 return v; %o A219930 } %o A219930 function isMin(arr, ik, k) { %o A219930 var i, im; %o A219930 im = true; %o A219930 for (i = ik; i < arr.length; i++) if (arr[i] < k) {im = false; break;} %o A219930 return im; %o A219930 } %o A219930 phiV = new Array(); %o A219930 for (k = 1; k < 50000; k++) phiV[k] = phi(k); %o A219930 cm = 1; %o A219930 for (n = 1; n < 3000; n++) if (phiV[n] > cm && isMin(phiV, n, phiV[n])) {cm = phiV[n]; document.write(n + ", ");} %Y A219930 Cf. A000010, A036912, A057635, A014197. %K A219930 nonn %O A219930 1,2 %A A219930 _Jon Perry_, Dec 01 2012