cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219931 Coefficients related to an asymptotic expansion of the logarithm of the central binomial.

This page as a plain text file.
%I A219931 #56 Jun 17 2025 08:14:29
%S A219931 1,6,5,28,9,22,13,120,17,38,21,92,25,54,29,496,33,70,37,156,41,86,45,
%T A219931 376,49,102,53,220,57,118,61,2016,65,134,69,284,73,150,77,632,81,166,
%U A219931 85,348,89,182,93,1520,97,198,101,412,105,214,109,888,113,230,117
%N A219931 Coefficients related to an asymptotic expansion of the logarithm of the central binomial.
%C A219931 An asymptotic expansion of the logarithm of the central binomial (A000984) for n>0 is given by log(binomial(2*n,n)) ~ (n*log(16)-log(Pi)-log(n) + sum_{k>=1}((-4)^(-k)*A002425(k)/a(k)*n^(1-2*k)))/2.
%C A219931 An asymptotic expansion of the logarithm of the swinging factorial (A056040) for n>1 is given by log(swing(n)) ~ (n*log(4)-log(Pi)-(-1)^n*(log(n/2) - (1/2)*sum_{k>=1}((-1)^k*A002425(k)/a(k)*n^(1-2*k))))/2.
%H A219931 Peter Luschny, <a href="/A219931/b219931.txt">Table of n, a(n) for n = 1..300</a>
%H A219931 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%F A219931 a(n) = denominator(2*E(2*n-1, 1)/(2*n-1)) where E(n, x) is the Euler polynomial. - _Peter Luschny_, Apr 03 2014
%F A219931 Warning: a(n) != (2*n-1)*2^valuation(n, 2). This was mistakenly assumed several times in the past, see A385054. - _Peter Luschny_, Jun 17 2025
%e A219931 log(binomial(2*n,n)) = n*log(4) - (log(n)+log(Pi))/2 - 1/(8*a(1)*n) + 1/(32*a(2)*n^3) - 1/(128*a(3)*n^5) + 17/(512*a(4)*n^7) - 31/(2048*a(5)*n^9) + 691/(8192*a(6)*n^11) + O(1/n^13).
%e A219931 log(swing(n)) = n*log(2) - (1/2)*log(Pi) - (1/4)*(-1)^n*(2*log(n/2) + 1/(a(1)*n) - 1/(a(2)*n^3) + 1/(a(3)*n^5) - 17/(a(4)*n^7) + 31/(a(5)*n^9) - 691/(a(6)*n^11)) + O(1/n^13).
%p A219931 Coeff_list := proc(len) local n;
%p A219931 asympt(ln(n/2)/2+lnGAMMA(n/2+1/2)-lnGAMMA(n/2+1),n,2*len+3);
%p A219931 subs(n=1/n,simplify(convert(%,polynom)));
%p A219931 [seq(4*coeff(unapply(%,n)(n),n,2*k+1),k=0..len-1)] end:
%p A219931 A219931_list := n -> denom(Coeff_list(n)); A219931_list(59);
%t A219931 max = 60; s = Normal[Series[Log[x/2]/2+LogGamma[x/2+1/2]-LogGamma[x/2+1], {x, Infinity, 2*max}]] /. x -> 1/x; a[n_] := Denominator[4*Coefficient[s, x^(2*n-1), 1]]; Table[a[n], {n, 1, max}] (* _Jean-François Alcover_, Feb 17 2014 *)
%t A219931 a[n_] := Denominator[2*EulerE[2*n-1, 1]/(2*n-1)]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Apr 04 2014, after _Peter Luschny_ *)
%Y A219931 Cf. A006519, A118413, A385054.
%K A219931 nonn,easy
%O A219931 1,2
%A A219931 _Peter Luschny_, Dec 01 2012
%E A219931 Edited and incorrect entries removed by _Georg Fischer_ and _Peter Luschny_, Jun 16 2025