A219965 Number of non-intersecting unit cubes regularly packed into the tetrahedron of edge length n.
0, 0, 0, 1, 4, 10, 19, 30, 45, 66, 94, 130, 172, 221, 278, 344, 422, 511, 611, 723, 848, 987, 1140, 1308, 1491, 1691, 1909, 2146, 2401, 2673, 2965, 3278, 3614, 3974, 4355, 4759, 5186, 5638, 6117, 6623, 7156, 7716, 8305, 8923, 9571, 10249, 10958, 11700, 12475, 13285, 14127, 15003, 15914, 16862, 17849, 18874, 19937, 21037, 22177, 23358, 24581, 25846, 27153, 28504
Offset: 1
Keywords
Links
- R. J. Mathar, Illustration of 30 cubes at n=8
- R. J. Mathar, Illustration of 66 cubes at n=10
- R. J. Mathar, Illustration of 221 cubes at n=14
Programs
-
Maple
# Number or squares in isosceles triangle of edge length n. RegSquInTri := proc(n) add(floor(n-2*y/sqrt(3)), y=1..floor(n*sqrt(3)/2)) ; end proc: A219965 := proc(n) local a,z,triedg ; a := 0 ; for z from 1 to floor(n*sqrt(2/3)) do triedg := n-z*sqrt(3/2) ; a := a+ RegSquInTri(triedg) ; end do: return a; end proc:
Formula
a(n) <= A171973(n).
Comments