cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219975 Number of tilings of an n X n square using straight (3 X 1) trominoes and 2 X 2 tiles.

This page as a plain text file.
%I A219975 #25 Apr 09 2025 22:57:18
%S A219975 1,0,1,2,3,28,267,2744,66653,2766100,141365332,13305552648,
%T A219975 2149055591278,493880634209398,192321197859269019,
%U A219975 124351154502319720238,122893248485909264026734,199405053536180281080458422,527809383857797224536981601752
%N A219975 Number of tilings of an n X n square using straight (3 X 1) trominoes and 2 X 2 tiles.
%H A219975 Kai Liang, <a href="https://arxiv.org/abs/2503.17698">Solving tiling enumeration problems by tensor network contractions</a>, arXiv:2503.17698 [math.CO], 2025. See p. 25, Table 4.
%e A219975 a(4) = 3, because there are 3 tilings of a 4 X 4 square using straight (3 X 1) trominoes and 2 X 2 tiles:
%e A219975   ._._____.  ._____._.  ._._._._.
%e A219975   | |_____|  |_____| |  | . | . |
%e A219975   | | . | |  | | . | |  |___|___|
%e A219975   |_|___| |  | |___|_|  | . | . |
%e A219975   |_____|_|  |_|_____|  |___|___|  .
%Y A219975 Main diagonal of A219967.
%Y A219975 Cf. A233807.
%K A219975 nonn,more
%O A219975 0,4
%A A219975 _Alois P. Heinz_, Dec 02 2012
%E A219975 a(12) from _Alois P. Heinz_, Sep 24 2014
%E A219975 a(13)-a(18) from _Martin Fuller_, Apr 09 2025