cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220019 Number of cyclotomic cosets of 7 mod 10^n.

Original entry on oeis.org

4, 27, 93, 265, 685, 1265, 2005, 2905, 3965, 5185, 6565, 8105, 9805, 11665, 13685, 15865, 18205, 20705, 23365, 26185, 29165, 32305, 35605, 39065, 42685, 46465, 50405, 54505, 58765, 63185, 67765, 72505, 77405, 82465, 87685, 93065, 98605, 104305, 110165, 116185, 122365, 128705, 135205, 141865, 148685
Offset: 1

Views

Author

V. Raman, Jan 27 2013

Keywords

Examples

			a(2) = 27 because there are 27 cyclotomic cosets of 7 mod 100:
{1, 7, 49, 43}
{2, 14, 98, 86}
{3, 21, 47, 29}
{4, 28, 96, 72}
{5, 35, 45, 15}
{6, 42, 94, 58}
{8, 56, 92, 44}
{9, 63, 41, 87}
{10, 70, 90, 30}
{11, 77, 39, 73}
{12, 84, 88, 16}
{13, 91, 37, 59}
{17, 19, 33, 31}
{18, 26, 82, 74}
{20, 40, 80, 60}
{22, 54, 78, 46}
{23, 61, 27, 89}
{24, 68, 76, 32}
{25, 75}
{34, 38, 66, 62}
{36, 52, 64, 48}
{50}
{51, 57, 99, 93}
{53, 71, 97, 79}
{55, 85, 95, 65}
{67, 69, 83, 81}
{0}
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[10^n, EulerPhi[#] / MultiplicativeOrder[7, #] & ]; Array[a, 50] (* Jean-François Alcover, Dec 18 2015 *)
  • PARI
    for(n=1,50,print1(sumdiv(10^n, d, eulerphi(d)/znorder(Mod(7, d)))", "))

Formula

Empirical G.f.: x*(88*x^5-142*x^4-63*x^3-24*x^2-15*x-4) / (x-1)^3. [Colin Barker, Feb 03 2013]
Conjecture: a(n) = 5*(16*n^2-60*n+37) for n>3. a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>6. [Colin Barker, Apr 14 2013]