This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220027 #15 May 28 2014 02:08:57 %S A220027 1,1,2,6,12,60,180,1260,5040,5040,25200,277200,2494800,32432400, %T A220027 227026800,227026800,3632428800,61751289600,61751289600,1173274502400, %U A220027 29331862560000,29331862560000,322650488160000,7420961227680000,601097859442080000,601097859442080000 %N A220027 a(n) = product(i >= 0, P(n, i)^(2^i)) where P(n, i) = product(p prime, n/2^(i+1) < p <= n/2^i). %C A220027 a(n) are the partial products of A219964(n). %C A220027 a(n) divides n!, n!/a(n) = 1, 1, 1, 1, 2, 2, 4, 4, 8, 72, 144, 144, 192... %C A220027 The swinging factorial (A056040) divides a(n), a(n)/n$ = 1, 1, 1, 1, 2,... %C A220027 The primorial of n (A034386) divides a(n), a(n)/n# = 1, 1, 1, 1, 2, 2, 6,.. %C A220027 If p^k is the largest power of a prime dividing a(n) then k is 2^n for some n >= 0. %C A220027 a(n) / A055773(n) is the largest square dividing a(n), a(n) / A055773(n) = A008833(a(n)). %p A220027 a := proc(n) local k; `if`(n < 2, 1, %p A220027 mul(k, k = select(isprime, [$iquo(n, 2)+1..n]))*a(iquo(n,2))^2) end: %p A220027 seq(a(i), i=0..25); %o A220027 (Sage) %o A220027 def a(n) : %o A220027 if n < 2 : return 1 %o A220027 return mul(k for k in prime_range(n//2+1,n+1))*a(n//2)^2 %o A220027 [a(n) for n in (0..25)] %Y A220027 Cf. A055773. %K A220027 nonn %O A220027 0,3 %A A220027 _Peter Luschny_, Mar 30 2013