cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220036 Number of 6 X n arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 6 X n array.

This page as a plain text file.
%I A220036 #7 Jul 30 2018 08:13:35
%S A220036 7,12,28,83,187,358,613,962,1426,2034,2823,3839,5137,6782,8850,11429,
%T A220036 14620,18538,23313,29091,36035,44326,54164,65769,79382,95266,113707,
%U A220036 135015,159525,187598,219622,256013,297216,343706,395989,454603,520119
%N A220036 Number of 6 X n arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 6 X n array.
%C A220036 Row 6 of A220032.
%H A220036 R. H. Hardin, <a href="/A220036/b220036.txt">Table of n, a(n) for n = 1..155</a>
%F A220036 Empirical: a(n) = (1/120)*n^5 - (1/12)*n^4 + (47/24)*n^3 - (23/12)*n^2 + (1771/30)*n - 323 for n>8.
%F A220036 Conjectures from _Colin Barker_, Jul 30 2018: (Start)
%F A220036 G.f.: x*(7 - 30*x + 61*x^2 - 45*x^3 - 26*x^4 + 59*x^5 - 35*x^6 + 3*x^7 + 24*x^8 - 21*x^9 + 3*x^10 + x^11 - x^12 + x^13) / (1 - x)^6.
%F A220036 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>14.
%F A220036 (End)
%e A220036 Some solutions for n=3:
%e A220036 ..1..0..0....0..0..0....0..0..0....0..0..0....1..0..0....0..0..0....0..0..0
%e A220036 ..1..0..0....0..0..0....0..0..0....1..0..0....1..1..1....1..0..0....0..0..0
%e A220036 ..1..0..0....1..0..0....0..0..0....1..1..1....1..1..1....1..0..0....0..0..0
%e A220036 ..1..0..0....1..0..0....1..1..0....1..1..1....1..1..1....1..1..1....1..0..0
%e A220036 ..1..0..0....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..0..0
%e A220036 ..1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1
%Y A220036 Cf. A220032.
%K A220036 nonn
%O A220036 1,1
%A A220036 _R. H. Hardin_, Dec 03 2012