This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220054 #29 Apr 25 2025 21:00:48 %S A220054 1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,11,11,1,1,1,1,33,39,33,1,1,1,1,87, %T A220054 195,195,87,1,1,1,1,241,849,2023,849,241,1,1,1,1,655,3895,16839,16839, %U A220054 3895,655,1,1,1,1,1793,17511,151817,249651,151817,17511,1793,1,1 %N A220054 Number A(n,k) of tilings of a k X n rectangle using right trominoes and 1 X 1 tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A220054 Liang Kai, <a href="/A220054/b220054.txt">Antidiagonals n = 0..35, flattened</a> (antidiagonals n = 0..29 from Alois P. Heinz) %H A220054 Kai Liang, <a href="https://arxiv.org/abs/2503.17698">Solving tiling enumeration problems by tensor network contractions</a>, arXiv:2503.17698 [math.CO], 2025. See p. 25, Table 4. %H A220054 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tromino">Tromino</a> %e A220054 A(2,2) = 5, because there are 5 tilings of a 2 X 2 rectangle using right trominoes and 1 X 1 tiles: %e A220054 ._._. ._._. .___. .___. ._._. %e A220054 |_|_| | |_| | ._| |_. | |_| | %e A220054 |_|_| |___| |_|_| |_|_| |___| %e A220054 Square array A(n,k) begins: %e A220054 1, 1, 1, 1, 1, 1, 1, 1, ... %e A220054 1, 1, 1, 1, 1, 1, 1, 1, ... %e A220054 1, 1, 5, 11, 33, 87, 241, 655, ... %e A220054 1, 1, 11, 39, 195, 849, 3895, 17511, ... %e A220054 1, 1, 33, 195, 2023, 16839, 151817, 1328849, ... %e A220054 1, 1, 87, 849, 16839, 249651, 4134881, 65564239, ... %e A220054 1, 1, 241, 3895, 151817, 4134881, 128938297, 3814023955, ... %e A220054 1, 1, 655, 17511, 1328849, 65564239, 3814023955, 207866584389, ... %p A220054 b:= proc(n, l) option remember; local k, t; %p A220054 if max(l[])>n then 0 elif n=0 or l=[] then 1 %p A220054 elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l)) %p A220054 else for k do if l[k]=0 then break fi od; b(n, subsop(k=1, l))+ %p A220054 `if`(k>1 and l[k-1]=1, b(n, subsop(k=2, k-1=2, l)), 0)+ %p A220054 `if`(k<nops(l) and l[k+1]=1, b(n, subsop(k=2, k+1=2, l)), 0)+ %p A220054 `if`(k<nops(l) and l[k+1]=0, b(n, subsop(k=1, k+1=2, l))+ %p A220054 b(n, subsop(k=2, k+1=1, l))+ b(n, subsop(k=2, k+1=2, l)), 0)+ %p A220054 `if`(k+1<nops(l) and l[k+1]=0 and l[k+2]=0, %p A220054 b(n, subsop(k=2, k+1=2, k+2=2, l)), 0) %p A220054 fi %p A220054 end: %p A220054 A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n])): %p A220054 seq(seq(A(n, d-n), n=0..d), d=0..14); %t A220054 b[n_, l_] := b[n, l] = Module[{k, t}, Which[ Max[l] > n , 0, n == 0 || l == {} , 1 , Min[l] > 0 , t := Min[l]; b[n - t, l - t] , True, For[k = 1, True, k++, If[ l[[k]] == 0 , Break[] ] ]; b[n, ReplacePart[l, k -> 1]] + If[k > 1 && l[[k - 1]] == 1, b[n, ReplacePart[l, {k -> 2, k - 1 -> 2}]], 0] + If[k < Length[l] && l[[k + 1]] == 1, b[n, ReplacePart[l, {k -> 2, k + 1 -> 2}]], 0] + If[k < Length[l] && l[[k + 1]] == 0, b[n, ReplacePart[l, {k -> 1, k + 1 -> 2}]] + b[n, ReplacePart[l, {k -> 2, k + 1 -> 1}]] + b[n, ReplacePart[l, {k -> 2, k + 1 -> 2}]], 0] + If[k + 1 < Length[l] && l[[k + 1]] == 0 && l[[k + 2]] == 0, b[n, ReplacePart[l, {k -> 2, k + 1 -> 2, k + 2 -> 2}]], 0] ] ]; a[n_, k_] := If[n >= k, b[n, Array[0 &, k]], b[k, Array[0 &, n]]]; Table [Table [a[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, Dec 09 2013, translated from Maple *) %Y A220054 Columns (or rows) k=0+1, 2-10 give: A000012, A127864, A127867, A127870, A220055, A220056, A220057, A220058, A220059, A220060. %Y A220054 Main diagonal gives: A220061. %K A220054 nonn,tabl %O A220054 0,13 %A A220054 _Alois P. Heinz_, Dec 03 2012