This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220062 #29 Feb 02 2019 15:50:14 %S A220062 1,1,0,1,1,0,1,2,0,0,1,3,2,0,0,1,4,4,2,0,0,1,5,6,6,2,0,0,1,6,8,10,8,2, %T A220062 0,0,1,7,10,14,16,12,2,0,0,1,8,12,18,24,26,16,2,0,0,1,9,14,22,32,42, %U A220062 42,24,2,0,0,1,10,16,26,40,58,72,68,32,2,0,0 %N A220062 Number A(n,k) of n length words over k-ary alphabet, where neighboring letters are neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A220062 Equivalently, the number of walks of length n-1 on the path graph P_k. - _Andrew Howroyd_, Apr 17 2017 %H A220062 Alois P. Heinz, <a href="/A220062/b220062.txt">Rows n = 0..140, flattened</a> %e A220062 A(5,3) = 12: there are 12 words of length 5 over 3-ary alphabet {a,b,c}, where neighboring letters are neighbors in the alphabet: ababa, ababc, abcba, abcbc, babab, babcb, bcbab, bcbcb, cbaba, cbabc, cbcba, cbcbc. %e A220062 Square array A(n,k) begins: %e A220062 1, 1, 1, 1, 1, 1, 1, 1, ... %e A220062 0, 1, 2, 3, 4, 5, 6, 7, ... %e A220062 0, 0, 2, 4, 6, 8, 10, 12, ... %e A220062 0, 0, 2, 6, 10, 14, 18, 22, ... %e A220062 0, 0, 2, 8, 16, 24, 32, 40, ... %e A220062 0, 0, 2, 12, 26, 42, 58, 74, ... %e A220062 0, 0, 2, 16, 42, 72, 104, 136, ... %e A220062 0, 0, 2, 24, 68, 126, 188, 252, ... %p A220062 b:= proc(n, i, k) option remember; `if`(n=0, 1, %p A220062 `if`(i=0, add(b(n-1, j, k), j=1..k), %p A220062 `if`(i>1, b(n-1, i-1, k), 0)+ %p A220062 `if`(i<k, b(n-1, i+1, k), 0))) %p A220062 end: %p A220062 A:= (n, k)-> b(n, 0, k): %p A220062 seq(seq(A(n, d-n), n=0..d), d=0..14); %t A220062 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, Sum[b[n-1, j, k], {j, 1, k}], If[i>1, b[n-1, i-1, k], 0] + If[i<k, b[n-1, i+1, k], 0]]]; A[n_, k_] := b[n, 0, k]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, Jan 19 2015, after _Alois P. Heinz_ *) %o A220062 (PARI) %o A220062 TransferGf(m,u,t,v,z)=vector(m,i,u(i))*matsolve(matid(m)-z*matrix(m,m,i,j,t(i,j)),vectorv(m,i,v(i))); %o A220062 ColGf(m,z)=1+z*TransferGf(m, i->1, (i,j)->abs(i-j)==1, j->1, z); %o A220062 a(n,k)=Vec(ColGf(k,x) + O(x^(n+1)))[n+1]; %o A220062 for(n=0, 7, for(k=0, 7, print1( a(n,k), ", ") ); print(); ); %o A220062 \\ _Andrew Howroyd_, Apr 17 2017 %Y A220062 Columns k=0, 2-10 give: A000007, A040000, A029744(n+2) for n>0, A006355(n+3) for n>0, A090993(n+1) for n>0, A090995(n-1) for n>2, A129639, A153340, A153362, A153360. %Y A220062 Rows 0-6 give: A000012, A001477, A005843(k-1) for k>0, A016825(k-2) for k>1, A008590(k-2) for k>2, A113770(k-2) for k>3, A063164(k-2) for k>4. %Y A220062 Main diagonal gives: A102699. %Y A220062 Cf. A198632, A188866, A276562, A208727, A208671. %K A220062 nonn,tabl %O A220062 0,8 %A A220062 _Alois P. Heinz_, Dec 03 2012