cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220072 Least prime p such that sum_{k=0}^n A005117(k+1)*x^{n-k} is irreducible modulo p.

Original entry on oeis.org

2, 5, 2, 7, 11, 31, 13, 19, 89, 17, 37, 37, 43, 19, 137, 29, 3, 7, 2, 19, 13, 59, 139, 37, 2, 239, 31, 337, 487, 97, 337, 97, 307, 181, 223, 19, 79, 401, 2, 491, 269, 211, 97, 193, 719, 149, 97, 191, 83, 613
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 28 2013

Keywords

Comments

Conjecture: For any n>0, we have a(n) <= n*(n+1), and the Galois group of SF_n(x) = sum_{k=0}^n A005117(k+1)*x^{n-k} over the rationals is isomorphic to the symmetric group S_n.
For another related conjecture, see the author's comment on A005117.

Examples

			a(4)=7 since SF_4(x)=x^4+2x^3+3x^2+5x+6 is irreducible modulo 7 but reducible modulo any of 2, 3, 5. It is easy to check that SF_4(x)==(x-2)*(x^3-x^2+x+2) (mod 5).
		

Crossrefs