A220072 Least prime p such that sum_{k=0}^n A005117(k+1)*x^{n-k} is irreducible modulo p.
2, 5, 2, 7, 11, 31, 13, 19, 89, 17, 37, 37, 43, 19, 137, 29, 3, 7, 2, 19, 13, 59, 139, 37, 2, 239, 31, 337, 487, 97, 337, 97, 307, 181, 223, 19, 79, 401, 2, 491, 269, 211, 97, 193, 719, 149, 97, 191, 83, 613
Offset: 1
Keywords
Examples
a(4)=7 since SF_4(x)=x^4+2x^3+3x^2+5x+6 is irreducible modulo 7 but reducible modulo any of 2, 3, 5. It is easy to check that SF_4(x)==(x-2)*(x^3-x^2+x+2) (mod 5).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..350
Comments