cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220115 a(n) = A000120(n) - A007895(n), the number of 1's in binary expansion of n minus the number of terms in Zeckendorf representation of n.

Original entry on oeis.org

0, 0, 0, 1, -1, 1, 0, 1, 0, 0, 0, 1, -1, 2, 1, 2, -1, -1, 0, 0, -1, 2, 1, 2, 0, 0, 1, 1, 0, 2, 1, 2, -2, -2, 1, 1, 0, 1, 0, 2, -1, 0, 1, 1, 0, 1, 0, 3, -1, 0, 0, 0, 0, 0, 0, 4, 1, 2, 2, 2, 2, 2, 2, 4, -2, -1, -1, -1, 0, 0, 0, 1, -2, 0, -1, 0, 1, 1, 1, 2, -2
Offset: 0

Views

Author

Alex Ratushnyak, Dec 05 2012

Keywords

Examples

			a(4) = A000120(4) - A007895(4) = 1 - 2 = -1.
		

Crossrefs

Programs

  • Mathematica
    zeck = DigitCount[Select[Range[0, 500], BitAnd[#, 2*#] == 0&], 2, 1]; DigitCount[Range[0, Length[zeck]-1], 2, 1] - zeck (* Jean-François Alcover, Jan 25 2018 *)

Formula

a(n) = A000120(n) - A007895(n).