A220147 Number of n X 2 arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 n X 2 array.
3, 11, 26, 52, 95, 163, 266, 416, 627, 915, 1298, 1796, 2431, 3227, 4210, 5408, 6851, 8571, 10602, 12980, 15743, 18931, 22586, 26752, 31475, 36803, 42786, 49476, 56927, 65195, 74338, 84416, 95491, 107627, 120890, 135348, 151071, 168131, 186602
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0....0..0....1..1....0..1....1..1....0..0....1..1....2..2....0..0....0..0 ..0..0....0..0....2..1....0..0....0..1....2..2....2..2....2..2....0..0....1..0 ..2..2....0..0....2..2....2..2....0..0....2..2....2..2....2..2....1..1....2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A220153.
Formula
Empirical: a(n) = (1/12)*n^4 - (1/6)*n^3 + (29/12)*n^2 + (2/3)*n.
Conjectures from Colin Barker, Jul 30 2018: (Start)
G.f.: x*(3 - 4*x + x^2 + 2*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Comments