cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220149 Number of nX4 arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX4 array.

This page as a plain text file.
%I A220149 #6 Jul 23 2025 00:53:35
%S A220149 10,50,254,1174,5410,24684,108169,448881,1761976,6564622,23314449,
%T A220149 79243936,258638752,812875058,2465906695,7234818015,20565976895,
%U A220149 56733702403,152106586332,396892051129,1009207780356,2503839951948
%N A220149 Number of nX4 arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX4 array.
%C A220149 Column 4 of A220153
%H A220149 R. H. Hardin, <a href="/A220149/b220149.txt">Table of n, a(n) for n = 1..210</a>
%F A220149 Empirical: a(n) = (1/552610124608731372158976000000)*n^29 + (1/7622208615292846512537600000)*n^28 + (1/272221736260458804019200000)*n^27 + (1/1878686930714001408000000)*n^26 + (463/23266815064996478976000000)*n^25 + (127/372269041039943663616000)*n^24 + (97193/2443015581824630292480000)*n^23 + (1458253/2124361375499678515200000)*n^22 + (293509/55178217545446195200000)*n^21 + (1203901/1051013667532308480000)*n^20 + (19197187/20232013099996938240000)*n^19 - (215771663/10648427947366809600000)*n^18 + (47996570583761/2907020829631139020800000)*n^17 - (3130777943459/13680098021793595392000)*n^16 + (352784890291/174491046196346880000)*n^15 + (12242591085947/145409205163622400000)*n^14 - (2308802430337703/1064842794736680960000)*n^13 + (63970460933829533/2129685589473361920000)*n^12 - (7607446827742849/82297057418634240000)*n^11 - (845289139000912665797/289685642113592524800000)*n^10 + (16663286001178049022791/284512684218706944000000)*n^9 - (300232887874952342719/602143247023718400000)*n^8 + (10527514392059792417183/6059066423176166400000)*n^7 + (113898768509462767685501/13464592051502592000000)*n^6 - (19927257308688059839763/149570053306486312500)*n^5 + (32438984170527374840711/44394125966910720000)*n^4 - (955894333256214244573/455832543410244000)*n^3 + (2762815941001472611/964724959598400)*n^2 - (432088153285363/1164544781400)*n - 2315 for n>4
%e A220149 Some solutions for n=3
%e A220149 ..0..0..0..0....2..2..0..0....2..1..0..1....1..0..0..1....1..1..0..1
%e A220149 ..2..2..0..0....2..2..2..2....2..2..0..0....2..0..0..0....1..1..0..0
%e A220149 ..2..2..2..2....2..2..2..2....2..2..2..2....2..2..1..0....2..2..0..0
%K A220149 nonn
%O A220149 1,1
%A A220149 _R. H. Hardin_ Dec 06 2012