cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220156 Number of 4Xn arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 4Xn array.

This page as a plain text file.
%I A220156 #6 Jul 23 2025 00:54:09
%S A220156 15,52,242,1174,4559,16110,53947,173732,539903,1620236,4698464,
%T A220156 13180052,35802185,94277039,240952485,598495844,1446788180,3408685943,
%U A220156 7838407335,17616947657,38749982170,83520468048,176604065342,366743870453
%N A220156 Number of 4Xn arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 4Xn array.
%C A220156 Row 4 of A220153
%H A220156 R. H. Hardin, <a href="/A220156/b220156.txt">Table of n, a(n) for n = 1..121</a>
%F A220156 Empirical: a(n) = (1/969450627708186624000000)*n^25 - (1/4562120600979701760000)*n^24 + (2027/77556050216654929920000)*n^23 - (331/177473799122780160000)*n^22 + (5539/80669908692172800000)*n^21 + (5921/3128016867655680000)*n^20 - (18577907/38318206628782080000)*n^19 + (18754471/474528874659840000)*n^18 - (41570691557/20167477173043200000)*n^17 + (5382522617/73004442255360000)*n^16 - (17042278220257/10439635242516480000)*n^15 + (9851672121271/1491376463216640000)*n^14 + (58162480943607049/52198176212582400000)*n^13 - (135094442095532831/2609908810629120000)*n^12 + (635574550376155319/474528874659840000)*n^11 - (1347751237421517133/59316109332480000)*n^10 + (296554709147396003149/1260467323315200000)*n^9 - (2610520959289132961/4236864952320000)*n^8 - (80984035976231237377421/3193183885731840000)*n^7 + (22349422485612993076363/44349776190720000)*n^6 - (7737663764129137016063569/1524523556556000000)*n^5 + (3378006014145622282711/109727291520000)*n^4 - (83444980373091022514603/820211504112000)*n^3 + (294465474881972180993/4365271310400)*n^2 + (987245448964903837/1487285800)*n - 1630947583 for n>18
%e A220156 Some solutions for n=3
%e A220156 ..0..0..0....1..0..0....1..0..0....0..0..0....0..0..0....1..0..0....1..1..1
%e A220156 ..1..0..0....1..0..0....1..0..0....1..0..0....0..0..0....2..0..0....1..0..1
%e A220156 ..1..1..1....2..0..0....2..0..0....1..1..2....1..1..0....2..1..1....1..0..0
%e A220156 ..2..2..1....2..0..0....2..1..1....1..1..1....1..1..1....2..2..2....1..1..1
%K A220156 nonn
%O A220156 1,1
%A A220156 _R. H. Hardin_ Dec 06 2012