This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220167 #27 Feb 04 2024 15:50:02 %S A220167 3,6,22,76,247,848,2892,9969,34455,119894,420582,1482874,5254954, %T A220167 18714432,66969859,240739417 %N A220167 Number of simple squared rectangles of order n up to symmetry. %C A220167 A squared rectangle is a rectangle dissected into a finite number of integer-sized squares. If no two of these squares are the same size then the squared rectangle is perfect. A squared rectangle is simple if it does not contain a smaller squared rectangle or squared square. The order of a squared rectangle is the number of squares into which it is dissected. [Edited by _Stuart E Anderson_, Feb 03 2024] %D A220167 See A006983 and A217156 for references and links. %H A220167 S. E. Anderson, <a href="http://www.squaring.net/sq/sr/spsr/spsr.html">Simple Perfect Squared Rectangles</a>. [Nonsquare rectangles only] %H A220167 S. E. Anderson, <a href="http://www.squaring.net/sq/ss/spss/spss.html">Simple Perfect Squared Squares</a>. %H A220167 S. E. Anderson, <a href="http://www.squaring.net/sq/sr/sisr/sisr.html">Simple Imperfect Squared Rectangles</a>. [Nonsquare rectangles only] %H A220167 S. E. Anderson, <a href="http://www.squaring.net/sq/ss/siss/siss.html">Simple Imperfect Squared Squares</a>. %H A220167 W. T. Tutte, <a href="http://dx.doi.org/10.4153/CJM-1963-029-x">A Census of Planar Maps</a>, Canad. J. Math. 15 (1963), 249-271. %F A220167 a(n) = A002839(n) + A002881(n). %F A220167 a(n) = A006983(n) + A002962(n) + A220165(n) + A219766(n). %F A220167 Conjecture: a(n) ~ n^(-5/2) * 4^n / (243*sqrt(Pi)), from "A Census of Planar Maps", p. 267, where William Tutte gave a conjectured asymptotic formula for the number of perfect squared rectangles where n is the number of elements in the dissection (the order). [Corrected by _Stuart E Anderson_, Feb 03 2024] %Y A220167 Cf. A002839, A002881, A006983, A002962, A220165, A219766. %K A220167 nonn,hard %O A220167 1,1 %A A220167 _Stuart E Anderson_, Dec 06 2012 %E A220167 a(9)-a(24) from _Stuart E Anderson_, Dec 07 2012