A220171 An ordered subset of primitive values of x^2 + x*y + y^2 where at least two ordered pairs (x1,y1) and (x2,y2) with x1 != x2, y1 != y2 and gcd(x1,y1) = gcd(x2,y2) = 1 yield identical primitive values.
91, 133, 217, 247, 259, 273, 301, 399, 403, 427, 469, 481, 511, 553, 559, 589, 637, 651, 679, 703, 721, 741, 763, 777, 793, 817, 871, 889, 903, 931, 949, 973, 1027, 1057, 1099, 1141, 1147, 1159, 1183, 1209, 1261, 1267, 1273, 1281, 1333, 1339, 1351
Offset: 1
Keywords
Examples
a(3) = 217 because it is the 3rd incident in ascending order of the primitive x^2 + x*y + y^2 that yields multiple solutions. This happens when (x, y) = (9, 8) and (13, 3).
Programs
-
Mathematica
maxLen = 100; sol[k_] := Solve[m^2 + m*n + n^2 == k && m > n > 0 && GCD[m, n] == 1, Integers]; getlist[l_] := Which[Length[sol[l]] == 0, {}, True, {m, n} /. sol[l]]; list = {}; p = 1; While[Length[list] < maxLen, (While[Length[getlist[p]] < 2, p++]; list = Append[list, p]; p++)]; list
Formula
n such that n = x1^2 + x1*y1 + y1^2 = x2^2 + x2*y2 + y2^2 with x1 != x2, y1 != y2 and gcd(x1,y1) = gcd(x2,y2) = 1.
Comments