This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220185 #38 Sep 08 2022 08:46:04 %S A220185 0,10,348,11830,401880,13652098,463769460,15754509550,535189555248, %T A220185 18180690368890,617608282987020,20980500931189798,712719423377466120, %U A220185 24211479893902658290,822477596969312915748,27940026817062736477150,949138434183163727307360 %N A220185 Numbers n such that n^2 + n(n+1) is an oblong number (A002378). %C A220185 Also numbers n such that the sum of the hexagonal numbers H(n) and H(n+1) is equal to m^2 + (m+1)^2 for some m. - _Colin Barker_, Dec 10 2014 %C A220185 Also nonnegative integers x in the solutions to 4*x^2-2*y^2+2*x-2*y = 0, the corresponding values of y being A251867. - _Colin Barker_, Dec 10 2014 %H A220185 Colin Barker, <a href="/A220185/b220185.txt">Table of n, a(n) for n = 1..654</a> %H A220185 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1). %F A220185 For n>1, a(n) = A089928(n*4-5). %F A220185 From _Bruno Berselli_, Apr 12 2013: (Start) %F A220185 G.f.: 2*x^2*(5-x)/((1-x)*(1-34*x+x^2)). %F A220185 a(n) = ((1+sqrt(2))^(4n-3)+(1-sqrt(2))^(4n-3)-2)/8. %F A220185 a(n+2) = 10*A029546(n)-2*A029546(n-1). (End) %F A220185 a(n) = 35*a(n-1)-35*a(n-2)+a(n-3). - _Colin Barker_, Dec 10 2014 %F A220185 a(n) = A251867(n) - A001542(n-1)^2. - _Alexander Samokrutov_, Sep 05 2015 %e A220185 a(3) = A089928(7) = 348. %p A220185 f:= gfun:-rectoproc({a(n)=35*(a(n-1)-a(n-2))+a(n-3),a(1)=0,a(2)=10,a(3)=348},a(n),remember): %p A220185 map(f, [$1..50]); # _Robert Israel_, Sep 06 2015 %t A220185 LinearRecurrence[{35, - 35, 1}, {0, 10, 348}, 20] (* _Vincenzo Librandi_, Sep 06 2015 *) %o A220185 (C) %o A220185 #include <stdio.h> %o A220185 #include <math.h> %o A220185 typedef unsigned long long U64; %o A220185 U64 rootPronic(U64 a) { %o A220185 U64 sr = 1L<<31, s, b; %o A220185 if (a < sr*(sr+1)) { %o A220185 sr>>=1; %o A220185 while (a < sr*(sr+1)) sr>>=1; %o A220185 } %o A220185 for (b = sr>>1; b; b>>=1) { %o A220185 s = sr+b; %o A220185 if (a >= s*(s+1)) sr = s; %o A220185 } %o A220185 return sr; %o A220185 } %o A220185 int main() { %o A220185 U64 a, n, r, t; %o A220185 for (n=0; n < (1L<<31); n++) { %o A220185 a = (n*(n+1)) + n*n; %o A220185 t = rootPronic(a); %o A220185 if (a == t*(t+1)) printf("%llu\n", n); %o A220185 } %o A220185 } %o A220185 (PARI) concat(0, Vec(2*x^2*(5-x)/((1-x)*(1-34*x+x^2))+O(x^100))) \\ _Colin Barker_, Dec 10 2014 %o A220185 (Magma) [Floor(((1+Sqrt(2))^(4*n-3)+(1-Sqrt(2))^(4*n-3)-2)/8): n in [1..20]]; // _Vincenzo Librandi_, Sep 08 2015 %Y A220185 Cf. A002378, A014105 (n^2 + n(n+1)), A029546, A084703 (numbers n such that n^2 + n(n+1) is a square). %Y A220185 Cf. A000290, A000384, A251867. %K A220185 nonn,easy %O A220185 1,2 %A A220185 _Alex Ratushnyak_, Apr 12 2013 %E A220185 More terms from _Bruno Berselli_, Apr 12 2013