A220196 T(n,k) = Sum of neighbor maps: log base 2 of the number of n X k binary arrays indicating the locations of corresponding elements equal to the sum mod 2 of their horizontal and vertical neighbors in a random 0..1 n X k array.
1, 1, 1, 3, 4, 3, 4, 4, 4, 4, 4, 8, 9, 8, 4, 6, 9, 12, 12, 9, 6, 7, 12, 12, 12, 12, 12, 7, 7, 12, 18, 20, 20, 18, 12, 7, 9, 16, 21, 24, 23, 24, 21, 16, 9, 10, 17, 22, 28, 30, 30, 28, 22, 17, 10, 10, 20, 27, 32, 31, 36, 31, 32, 27, 20, 10, 12, 20, 30, 32, 39, 42, 42, 39, 32, 30, 20, 12, 13, 24
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..0..0..0....0..0..0..0....1..1..1..0....0..1..0..0....0..1..0..0 ..0..1..0..0....0..0..0..0....1..0..0..1....0..0..0..1....0..1..1..1 ..0..1..0..0....0..0..0..1....1..0..1..1....0..0..0..0....0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
Crossrefs
Column 1 is A117571.
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3) -a(n-4) increment period 3: 0 2 1
k=2: a(n) = a(n-1) +a(n-4) -a(n-5) increment period 4: 3 0 4 1
k=3: a(n) = a(n-1) +a(n-6) -a(n-7) increment period 6: 1 5 3 0 6 3
k=4: a(n) = a(n-1) +a(n-5) -a(n-6) increment period 5: 4 4 0 8 4
k=5: a(n) = a(n-3) +a(n-8) -a(n-11) increment period 24: 5 3 8 3 7 1 8 5 6 1 9 4 5 2 9 3 7 2 7 5 6 0 10 4
k=6: a(n) = a(n-1) +a(n-9) -a(n-10) increment period 9: 6 6 6 6 6 6 0 12 6
k=7: a(n) = a(n-1) +a(n-12) -a(n-13) increment period 12: 5 9 7 3 11 7 5 9 7 0 14 7
Comments