cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220196 T(n,k) = Sum of neighbor maps: log base 2 of the number of n X k binary arrays indicating the locations of corresponding elements equal to the sum mod 2 of their horizontal and vertical neighbors in a random 0..1 n X k array.

Original entry on oeis.org

1, 1, 1, 3, 4, 3, 4, 4, 4, 4, 4, 8, 9, 8, 4, 6, 9, 12, 12, 9, 6, 7, 12, 12, 12, 12, 12, 7, 7, 12, 18, 20, 20, 18, 12, 7, 9, 16, 21, 24, 23, 24, 21, 16, 9, 10, 17, 22, 28, 30, 30, 28, 22, 17, 10, 10, 20, 27, 32, 31, 36, 31, 32, 27, 20, 10, 12, 20, 30, 32, 39, 42, 42, 39, 32, 30, 20, 12, 13, 24
Offset: 1

Views

Author

R. H. Hardin Dec 07 2012

Keywords

Comments

Table starts
..1..1..3..4..4..6..7..7..9..10.10..12.13.13.15.16.16.18.19.19
..1..4..4..8..9.12.12.16.17..20.20..24.25.28.28.32.33.36.36
..3..4..9.12.12.18.21.22.27..30.30..36.39.40.45.48.48.54
..4..8.12.12.20.24.28.32.32..40.44..48.52.52.60.64.68
..4..9.12.20.23.30.31.39.44..50.51..60.64.69.71.80
..6.12.18.24.30.36.42.42.54..60.66..72.78.84.90
..7.12.21.28.31.42.49.54.63..70.70..84.91.96
..7.16.22.32.39.42.54.64.71..80.86..96.97
..9.17.27.32.44.54.63.71.73..90.98.108
.10.20.30.40.50.60.70.80.90.100
.10.20.30.44.51.66.70.86.98
.12.24.36.48.60.72.84.96

Examples

			Some solutions for n=3 k=4
..0..0..0..0....0..0..0..0....1..1..1..0....0..1..0..0....0..1..0..0
..0..1..0..0....0..0..0..0....1..0..0..1....0..0..0..1....0..1..1..1
..0..1..0..0....0..0..0..1....1..0..1..1....0..0..0..0....0..1..0..0
		

Crossrefs

Column 1 is A117571.

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3) -a(n-4) increment period 3: 0 2 1
k=2: a(n) = a(n-1) +a(n-4) -a(n-5) increment period 4: 3 0 4 1
k=3: a(n) = a(n-1) +a(n-6) -a(n-7) increment period 6: 1 5 3 0 6 3
k=4: a(n) = a(n-1) +a(n-5) -a(n-6) increment period 5: 4 4 0 8 4
k=5: a(n) = a(n-3) +a(n-8) -a(n-11) increment period 24: 5 3 8 3 7 1 8 5 6 1 9 4 5 2 9 3 7 2 7 5 6 0 10 4
k=6: a(n) = a(n-1) +a(n-9) -a(n-10) increment period 9: 6 6 6 6 6 6 0 12 6
k=7: a(n) = a(n-1) +a(n-12) -a(n-13) increment period 12: 5 9 7 3 11 7 5 9 7 0 14 7