This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220211 #40 Nov 01 2024 23:38:15 %S A220211 6,12,20,42,56,72,110,156,240,272,342,506,600,702,812,930,992,1332, %T A220211 1640,1806,2162,2352,2756,3422,3660,4032,4422,4970,5256,6162,6480, %U A220211 6806,7832,9312,10100,10506,11342,11772,12656,14520,15500,16002,16256,17030,18632 %N A220211 The order of the one-dimensional affine group in the finite fields F_q with q >= 3. %C A220211 The affine group is the group of invertible affine transformations in F_q such as: x--> ax+b, a > 0. %C A220211 These groups are Frobenius groups belonging to A178498. %C A220211 F_q is a field, so q = p^n, p is prime, with q >= 3 here. %C A220211 The one-dimensional affine group in the finite fields F_q with q >= 3 is isomorphic to the semidirect product F_q x F_q^{*}, where F_q is endowed with the law +, and F_q^{*} is endowed with the law x. - _Bernard Schott_, Dec 22 2012 %H A220211 Bernard Schott and Jean-Louis Tu, <a href="http://www.les-mathematiques.net/phorum/read.php?17,785127,785720#msg-785720">QDV8 & H62 : Hommage à Frobenius - Frobenius 8 - Exercice 8.2</a> (French mathematical forum les-mathematiques.net) %H A220211 Jean-Pierre Serre, <a href="https://www.college-de-france.fr/media/jean-pierre-serre/UPL2937151343298039815_1___Groupes_finis.pdf">Groupes finis</a>, ENS - 1978/1979. %F A220211 For the finite field F_q with q = p^n, the order of its affine group is q(q-1) = p^n(p^n-1), p prime, q >= 3. %F A220211 a(n) = A000961(n+2)*(A000961(n+2) - 1). - _Bernard Schott_, Dec 22 2012 %e A220211 a(1)=6 and this affine group of order 6 in the field F_3 is the dihedral group D_3 isomorphic to permutation group S_3. %e A220211 a(2)=12 and this affine group of order 12 in the field F_4 is the semidirect product of Z(2) X Z(2) with Z(3). %e A220211 a(6)=72 because for p=3, n=2 ==> q = p^n = 9 and 72 = q(q-1) = 9*8. %p A220211 (p,n)-> p^n*(p^n-1) %t A220211 mx = 20000; t = {}; p = 2; While[cnt = 0; n = 1; While[m = p^n (p^n - 1); m <= mx, AppendTo[t, m]; cnt++; n++]; cnt > 0, p = NextPrime[p]]; Union[Rest[t]] (* _T. D. Noe_, Dec 19 2012 *) %Y A220211 Cf. A000961, A178498. %K A220211 nonn,easy %O A220211 1,1 %A A220211 _Bernard Schott_, Dec 07 2012