cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220219 Products of primorials where all exponents in its prime factorization are one less than a prime.

This page as a plain text file.
%I A220219 #7 Jun 21 2019 11:19:43
%S A220219 1,2,4,6,12,16,30,36,48,60,64,144,180,192,210,240,420,576,720,900,960,
%T A220219 1024,1260,1296,1680,2310,2880,3072,3600,4096,4620,5040,5184,6300,
%U A220219 6480,6720,9216,12288,13860,14400
%N A220219 Products of primorials where all exponents in its prime factorization are one less than a prime.
%C A220219 Erdős & Mirsky call these B-numbers.
%H A220219 Amiram Eldar, <a href="/A220219/b220219.txt">Table of n, a(n) for n = 1..10000</a>
%H A220219 P. Erdős and L. Mirsky, <a href="http://www.renyi.hu/~p_erdos/1952-12.pdf">The distribution of values of the divisor function d(n)</a>, Proc. London Math. Soc. 2 (1952), pp. 257-271.
%F A220219 Erdős & Mirsky show that there are exp((k + o(1)) sqrt(log x)/log log x) members of this sequence below x, where k = Pi * sqrt(8/3) = 5.130....
%o A220219 (PARI) is(n)=my(e=valuation(n,2),e1); if(!isprime(e+1), return(n==1)); n>>=e; forprime(p=3,, if(n==1, return(1)); e1=valuation(n,p); if(!isprime(e1+1) || e1 > e, return(0)); n/=p^e1; e = e1)
%Y A220219 Intersection of A025487 and A220218.
%K A220219 nonn
%O A220219 1,2
%A A220219 _Charles R Greathouse IV_, Dec 07 2012