cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220220 Primes p of the form p = A161671(k) = A161671(k+1).

This page as a plain text file.
%I A220220 #12 Mar 22 2022 18:53:40
%S A220220 2,7,43,311,491,827,1367,1693,1733,1741,2089,2239,2927,3343,5231,5743,
%T A220220 9319,9521,11177,12611,13249,15511,16661,17989,24083,24611,25679,
%U A220220 25841,28723,37861,39199,46663,47279,51659,53281,58031,58309,58549,59723,64091,68041,70051,70913,71261
%N A220220 Primes p of the form p = A161671(k) = A161671(k+1).
%C A220220 There are also composites m = A161671(k) = A161671(k+1). An example is 65 = A161671(26) = A161671(27). - _Michael De Vlieger_, Mar 22 2022
%H A220220 Michael De Vlieger, <a href="/A220220/b220220.txt">Table of n, a(n) for n = 1..10000</a>
%H A220220 Michael De Vlieger, <a href="/A161671/a161671.png">Scatterplot of A161671(n)</a>, n = 1..120, showing and labeling primes p in this sequence in red.
%H A220220 Michael De Vlieger, <a href="/A220220/a220220.png">Scatterplot of A161671(n)</a>, n = 1..2^12, showing primes p in this sequence in red.
%e A220220 The prime 2 is in the sequence because 2 = A161671(1) = A161671(2).
%t A220220 f[n_] := FixedPoint[n + PrimePi@ # &, n + PrimePi@ n]; Reap[Do[(If[PrimeQ[#] && # == j, Sow[#]]; j = #) &[Prime[i] - f[i - 1] ], {i, 8500}] ][[-1, -1]] (* _Michael De Vlieger_, Mar 22 2022, after _Robert G. Wilson v_ at A141468 *)
%Y A220220 Cf. A141468, A161671, A214627.
%K A220220 nonn,less
%O A220220 1,1
%A A220220 _Juri-Stepan Gerasimov_, Dec 07 2012