cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A220250 Sum of neighbor maps: number of nX2 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their king-move neighbors in a random 0..2 nX2 array.

Original entry on oeis.org

2, 16, 48, 256, 928, 4096, 15872, 65536, 259584, 1048576, 4182016, 16777216, 67051520, 268435456, 1073479680, 4294967296, 17178689536, 68719476736, 274872664064, 1099511627776, 4398023442432, 17592186044416, 70368643514368
Offset: 1

Views

Author

R. H. Hardin Dec 08 2012

Keywords

Comments

Column 2 of A220254

Examples

			Some solutions for n=3
..0..0....1..1....1..1....1..0....0..1....0..0....0..1....1..0....0..1....0..0
..0..1....0..1....0..0....0..0....1..1....0..0....0..0....0..0....0..1....0..1
..0..0....1..1....0..0....0..1....1..0....1..0....0..0....1..0....0..1....1..0
		

Formula

Empirical: a(n)=4*a(n-1)+8*a(n-2)-32*a(n-3)-16*a(n-4)+64*a(n-5)
a(n) = 4^n - 2^(n-2)*(n+1)*(1-(-1)^n). - Vaclav Kotesovec, Jul 06 2013

A220251 Sum of neighbor maps: number of nX3 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their king-move neighbors in a random 0..2 nX3 array.

Original entry on oeis.org

8, 48, 324, 4096, 31744, 262144, 2011776, 16728064, 134217728, 1073741824, 8557195616, 68719476736, 549755813888, 4397962625024, 35175111229440, 281474976710656, 2251796592459776, 18014398509481984, 144112331924652032
Offset: 1

Views

Author

R. H. Hardin Dec 08 2012

Keywords

Comments

Column 3 of A220254

Examples

			Some solutions for n=3
..1..0..1....1..0..0....0..0..0....0..1..0....0..1..0....0..0..0....0..0..0
..1..1..0....0..0..1....1..0..1....0..0..0....0..1..0....1..0..0....1..0..0
..1..1..1....0..0..0....0..0..0....0..0..1....0..1..1....1..0..0....0..1..1
		

A220252 Sum of neighbor maps: number of nX4 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their king-move neighbors in a random 0..2 nX4 array.

Original entry on oeis.org

16, 256, 4096, 45792, 1048576, 16777216, 268435456, 4294967296, 68476059648, 1099511627776, 17592186044416, 281474976710656, 4503599627370496, 72056280260730880, 1152921504606846976, 18446744073709551616
Offset: 1

Views

Author

R. H. Hardin Dec 08 2012

Keywords

Comments

Column 4 of A220254

Examples

			Some solutions for n=3
..0..1..1..1....0..1..0..0....0..1..1..1....0..1..0..0....0..1..1..1
..1..1..0..0....1..0..1..1....1..0..1..0....0..0..0..0....1..1..0..0
..0..0..0..1....0..1..0..1....0..0..1..1....1..0..0..0....0..0..1..1
		

A220253 Sum of neighbor maps: number of nX5 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their king-move neighbors in a random 0..2 nX5 array.

Original entry on oeis.org

24, 928, 31744, 1048576, 33350528, 1073741824
Offset: 1

Views

Author

R. H. Hardin Dec 08 2012

Keywords

Comments

Column 5 of A220254

Examples

			Some solutions for n=3
..1..0..0..0..1....0..1..0..0..0....0..1..0..0..0....1..0..0..1..0
..1..0..0..0..0....0..1..0..0..1....0..0..0..0..0....0..0..0..0..1
..0..1..0..0..1....0..0..0..0..0....0..1..1..1..1....1..0..1..1..1
		
Showing 1-4 of 4 results.