cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220272 Number of ways to write n=x^2+y (x>0, y>0) with 2*x*y-1 prime.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 1, 1, 3, 2, 2, 2, 1, 1, 3, 3, 1, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 1, 1, 4, 3, 1, 2, 2, 2, 5, 3, 3, 3, 4, 3, 3, 1, 3, 3, 2, 2, 4, 4, 2, 6, 2, 2, 4, 4, 2, 3, 1, 2, 5, 4, 1, 3, 3, 3, 6, 2, 3, 5, 4, 3, 3, 3, 3, 6, 3, 2, 4, 2, 3, 4, 3, 2, 5, 3, 5, 2, 1, 1, 9, 4, 3, 4, 3, 5, 3, 2, 2, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 09 2012

Keywords

Comments

Conjecture: a(n)>0 for all n>2.
This has been verified for n up to 3*10^9. The author observed that for each n=3,...,3*10^9 we may even require x<(log n)^2, but Jack Brennen found that for n=4630581798 we cannot require x<(log n)^2.
The author guessed that the conjecture can be slightly refined as follows: Any integer n>2 can be written as x^2+y with 2*x*y-1 prime, where x and y are positive integers with x<=y.
Zhi-Wei Sun also made the following general conjecture: If m is a positive integer and r is 1 or -1, then any sufficiently large integer n can be written as x^2+y (x>0, y>0) with m*x*y+r prime.
For example, for (m,r)=(1,-1),(1,1),(2,1),(3,-1),(3,1),(4,-1),(4,1),(5,-1),(5,1),(6,-1),(6,1), it suffices to require that n is greater than 12782, 15372, 488, 5948, 2558, 92, 822, 21702, 6164, 777, 952 respectively.

Examples

			a(18)=1 since 18=3^2+9 with 2*3*9-1=53 prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[If[PrimeQ[2k(n-k^2)-1]==True,1,0],{k,1,Sqrt[n]}]
    Do[Print[n," ",a[n]],{n,1,100}]