A220280 The reluctant sequence for A002260.
1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3
Offset: 1
Examples
A002260 begins 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, ... so the first few rows of the new triangle are 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 3, ... ~
Links
- Boris Putievskiy, Table of n, a(n) for n = 1..10000
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Programs
-
Python
t=int((math.sqrt(8*n-7) - 1)/ 2) n1=n-t*(t+1)/2 t1=int((math.sqrt(8*n1-7) - 1)/ 2) a=n1-t1*(t1+1)/2
Formula
a(n) = n1 - t1(t1+1)/2, where n1 = n - t(t+1)/2, t1 = floor[(-1+sqrt(8*n1-7))/2], t=floor[(-1+sqrt(8*n-7))/2]. For example, a(6)=2 since t=2, t1=1, n1=3.
Extensions
Edited by N. J. A. Sloane, Jun 07 2024
Comments