cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220354 Irregular triangle T(n,k), read by rows; row n gives coefficients in expansion of P_n(x), which is defined by: P_0(x) = 1, P_n(x) = P_(n-1)(x)+x if n odd, P_n(x) = P_(n-1)(x)*x if n even.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 0, 1, 2, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 1, 2, 1, 0, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 13 2013

Keywords

Comments

Row lengths are: 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, ...

Examples

			Irregular triangle begins:
1
1, 1
0, 1, 1
0, 2, 1
0, 0, 2, 1
0, 1, 2, 1
0, 0, 1, 2, 1
0, 1, 1, 2, 1
0, 0, 1, 1, 2, 1
0, 1, 1, 1, 2, 1
0, 0, 1, 1, 1, 2, 1
0, 1, 1, 1, 1, 2, 1
0, 0, 1, 1, 1, 1, 2, 1
0, 1, 1, 1, 1, 1, 2, 1
...
		

Crossrefs

Cf. A219605.

Formula

Sum_(T(n,k)*x^k, k>=0) = A019590(n+1), A008619(n+1), A123208(n) for x = 0, 1, 2 respectively.