This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220377 #31 Jan 12 2021 21:36:59 %S A220377 1,0,2,1,3,1,6,1,7,3,7,3,14,3,15,6,14,6,25,6,22,10,25,9,42,8,34,15,37, %T A220377 15,53,13,48,22,53,17,78,17,65,30,63,24,99,24,88,35,84,30,126,34,103, %U A220377 45,103,38,166,35,124,57,128,51,184,44,150,67,172,52,218 %N A220377 Number of partitions of n into three distinct and mutually relatively prime parts. %C A220377 The Heinz numbers of these partitions are the intersection of A005117 (strict), A014612 (triples), and A302696 (coprime). - _Gus Wiseman_, Oct 14 2020 %H A220377 Fausto A. C. Cariboni, <a href="/A220377/b220377.txt">Table of n, a(n) for n = 6..10000</a> (terms 6..1000 from Seiichi Manyama) %F A220377 a(n > 2) = A307719(n) - 1. - _Gus Wiseman_, Oct 15 2020 %e A220377 For n=10 we have three such partitions: 1+2+7, 1+4+5 and 2+3+5. %e A220377 From _Gus Wiseman_, Oct 14 2020: (Start) %e A220377 The a(6) = 1 through a(20) = 15 triples (empty column indicated by dot, A..H = 10..17): %e A220377 321 . 431 531 532 731 543 751 743 753 754 971 765 B53 875 %e A220377 521 541 651 752 951 853 B51 873 B71 974 %e A220377 721 732 761 B31 871 D31 954 D51 A73 %e A220377 741 851 952 972 A91 %e A220377 831 941 B32 981 B54 %e A220377 921 A31 B41 A71 B72 %e A220377 B21 D21 B43 B81 %e A220377 B52 C71 %e A220377 B61 D43 %e A220377 C51 D52 %e A220377 D32 D61 %e A220377 D41 E51 %e A220377 E31 F41 %e A220377 F21 G31 %e A220377 H21 %e A220377 (End) %t A220377 Table[Length@Select[ IntegerPartitions[ n, {3}], #[[1]] != #[[2]] != #[[3]] && GCD[#[[1]], #[[2]]] == 1 && GCD[#[[1]], #[[3]]] == 1 && GCD[#[[2]], #[[3]]] == 1 &], {n, 6, 100}] %t A220377 Table[Count[IntegerPartitions[n,{3}],_?(CoprimeQ@@#&&Length[ Union[#]] == 3&)],{n,6,100}] (* _Harvey P. Dale_, May 22 2020 *) %o A220377 (PARI) a(n)=my(P=partitions(n));sum(i=1,#P,#P[i]==3&&P[i][1]<P[i][2]&&P[i][2]<P[i][3]&&gcd(P[i][1],P[i][2])==1&&gcd(P[i][1],P[i][3])==1&&gcd(P[i][2],P[i][3])==1) \\ _Charles R Greathouse IV_, Dec 14 2012 %Y A220377 Cf. A015617, A300815. %Y A220377 A023022 is the 2-part version. %Y A220377 A101271 is the relative prime instead of pairwise coprime version. %Y A220377 A220377*6 is the ordered version. %Y A220377 A305713 counts these partitions of any length, with Heinz numbers A302797. %Y A220377 A307719 is the non-strict version. %Y A220377 A337461 is the non-strict ordered version. %Y A220377 A337563 is the case with no 1's. %Y A220377 A337605 is the pairwise non-coprime instead of pairwise coprime version. %Y A220377 A001399(n-6) counts strict 3-part partitions, with Heinz numbers A007304. %Y A220377 A008284 counts partitions by sum and length, with strict case A008289. %Y A220377 A318717 counts pairwise non-coprime strict partitions. %Y A220377 A326675 ranks pairwise coprime sets. %Y A220377 A327516 counts pairwise coprime partitions. %Y A220377 A337601 counts 3-part partitions whose distinct parts are pairwise coprime. %Y A220377 Cf. A000217, A007360, A023023, A051424, A078374, A087087, A302696, A333227, A337485, A337561. %K A220377 nonn %O A220377 6,3 %A A220377 _Carl Najafi_, Dec 13 2012