cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220412 Triangle read by rows, the coefficients of J. L. Fields generalized Bernoulli polynomials.

This page as a plain text file.
%I A220412 #17 Mar 20 2020 03:48:05
%S A220412 1,0,1,0,1,5,0,4,21,35,0,18,101,210,175,0,48,286,671,770,385,0,33168,
%T A220412 207974,531531,715715,525525,175175,0,8640,56568,154466,231231,205205,
%U A220412 105105,25025,0,1562544,10615548,30582796,49534277,49689640,31481450,11911900
%N A220412 Triangle read by rows, the coefficients of J. L. Fields generalized Bernoulli polynomials.
%C A220412 The Fields polynomials are defined: F_{2*n}(x) = sum(k=0..n, x^k*T(n,k)/A220411(n)) and F_{2*n+1}(x) = 0. See A220002 for an application to the asymptotic expansion of the Catalan numbers.
%D A220412 Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969, page 34.
%H A220412 J. L. Fields, <a href="http://dx.doi.org/10.1017/S0013091500013171">A note on the asymptotic expansion of a ratio of gamma functions</a>, Proc. Edinburgh Math. Soc. 15 (1) (1966), 43-45.
%F A220412 See Y. L. Luke 2.8(3) for the generalized Bernoulli polynomials and 2.11(16) for the special case of Fields polynomials. The Maple and Sage programs give a recursive definition.
%e A220412 The coefficients T(n,k):
%e A220412 [0], [1]
%e A220412 [1], [0,  1]
%e A220412 [2], [0,  1,   5]
%e A220412 [3], [0,  4,  21,  35]
%e A220412 [4], [0, 18, 101, 210, 175]
%e A220412 [5], [0, 48, 286, 671, 770, 385]
%e A220412 The Fields polynomials:
%e A220412 F_0 (x) =  1 / 1
%e A220412 F_2 (x) =  x / (-6)
%e A220412 F_4 (x) = (5*x^2+x) / 60
%e A220412 F_6 (x) = (35*x^3+21*x^2+4*x) / (-504)
%e A220412 F_8 (x) = (175*x^4+210*x^3+101*x^2+18*x) / 2160
%e A220412 F_10(x) = (385*x^5+770*x^4+671*x^3+286*x^2+48*x) / (-3168)
%p A220412 FieldsPoly := proc(n,x) local recP, P; recP := proc(n,x) option remember; local k; if n = 0 then return(1) fi; -2*x*add(binomial(n-1,2*k+1)* bernoulli(2*k+2)/(2*k+2)*recP(n-2*k-2,x), k=0..(n/2-1)) end:
%p A220412 P := recP(n,x); (-1)^iquo(n,2)*denom(P); sort(expand(P*%)) end:
%p A220412 with(PolynomialTools): A220412_row := n -> CoefficientList(FieldsPoly( 2*i,x),x): seq(A220412_row(i),i=0..8);
%t A220412 F[0, _] = 1; F[n_, x_] := F[n, x] = -2*x*Sum[Binomial[n-1, 2*k+1]*BernoulliB[2*k+2]/(2*k+2)*F[n-2*k-2, x], {k, 0, n/2-1}]; t[n_, k_] := Coefficient[(-1)^Mod[n, 2]*F[2*n, x] // Together // Numerator, x, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 09 2014 *)
%o A220412 (Sage)
%o A220412 @CachedFunction
%o A220412 def FieldsPoly(n):
%o A220412     A = PolynomialRing(QQ, 'x')
%o A220412     x = A.gen()
%o A220412     if n == 0: return A(1)
%o A220412     return -2*x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(2*k+2)*FieldsPoly(n-2*k-2) for k in (0..n-1))
%o A220412 def FieldsCoeffs(n):
%o A220412     P = FieldsPoly(n)
%o A220412     d = (-1)^(n//2) * denominator(P)
%o A220412     return list(d * P)
%o A220412 A220412_row = lambda n: FieldsCoeffs(2*n)
%Y A220412 Cf. A220411.
%K A220412 nonn,tabl
%O A220412 0,6
%A A220412 _Peter Luschny_, Dec 30 2012