This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220412 #17 Mar 20 2020 03:48:05 %S A220412 1,0,1,0,1,5,0,4,21,35,0,18,101,210,175,0,48,286,671,770,385,0,33168, %T A220412 207974,531531,715715,525525,175175,0,8640,56568,154466,231231,205205, %U A220412 105105,25025,0,1562544,10615548,30582796,49534277,49689640,31481450,11911900 %N A220412 Triangle read by rows, the coefficients of J. L. Fields generalized Bernoulli polynomials. %C A220412 The Fields polynomials are defined: F_{2*n}(x) = sum(k=0..n, x^k*T(n,k)/A220411(n)) and F_{2*n+1}(x) = 0. See A220002 for an application to the asymptotic expansion of the Catalan numbers. %D A220412 Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969, page 34. %H A220412 J. L. Fields, <a href="http://dx.doi.org/10.1017/S0013091500013171">A note on the asymptotic expansion of a ratio of gamma functions</a>, Proc. Edinburgh Math. Soc. 15 (1) (1966), 43-45. %F A220412 See Y. L. Luke 2.8(3) for the generalized Bernoulli polynomials and 2.11(16) for the special case of Fields polynomials. The Maple and Sage programs give a recursive definition. %e A220412 The coefficients T(n,k): %e A220412 [0], [1] %e A220412 [1], [0, 1] %e A220412 [2], [0, 1, 5] %e A220412 [3], [0, 4, 21, 35] %e A220412 [4], [0, 18, 101, 210, 175] %e A220412 [5], [0, 48, 286, 671, 770, 385] %e A220412 The Fields polynomials: %e A220412 F_0 (x) = 1 / 1 %e A220412 F_2 (x) = x / (-6) %e A220412 F_4 (x) = (5*x^2+x) / 60 %e A220412 F_6 (x) = (35*x^3+21*x^2+4*x) / (-504) %e A220412 F_8 (x) = (175*x^4+210*x^3+101*x^2+18*x) / 2160 %e A220412 F_10(x) = (385*x^5+770*x^4+671*x^3+286*x^2+48*x) / (-3168) %p A220412 FieldsPoly := proc(n,x) local recP, P; recP := proc(n,x) option remember; local k; if n = 0 then return(1) fi; -2*x*add(binomial(n-1,2*k+1)* bernoulli(2*k+2)/(2*k+2)*recP(n-2*k-2,x), k=0..(n/2-1)) end: %p A220412 P := recP(n,x); (-1)^iquo(n,2)*denom(P); sort(expand(P*%)) end: %p A220412 with(PolynomialTools): A220412_row := n -> CoefficientList(FieldsPoly( 2*i,x),x): seq(A220412_row(i),i=0..8); %t A220412 F[0, _] = 1; F[n_, x_] := F[n, x] = -2*x*Sum[Binomial[n-1, 2*k+1]*BernoulliB[2*k+2]/(2*k+2)*F[n-2*k-2, x], {k, 0, n/2-1}]; t[n_, k_] := Coefficient[(-1)^Mod[n, 2]*F[2*n, x] // Together // Numerator, x, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 09 2014 *) %o A220412 (Sage) %o A220412 @CachedFunction %o A220412 def FieldsPoly(n): %o A220412 A = PolynomialRing(QQ, 'x') %o A220412 x = A.gen() %o A220412 if n == 0: return A(1) %o A220412 return -2*x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(2*k+2)*FieldsPoly(n-2*k-2) for k in (0..n-1)) %o A220412 def FieldsCoeffs(n): %o A220412 P = FieldsPoly(n) %o A220412 d = (-1)^(n//2) * denominator(P) %o A220412 return list(d * P) %o A220412 A220412_row = lambda n: FieldsCoeffs(2*n) %Y A220412 Cf. A220411. %K A220412 nonn,tabl %O A220412 0,6 %A A220412 _Peter Luschny_, Dec 30 2012