cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220415 Table T(n,k)= floor(n/k)+ floor(k/n), n,k >0 read by antidiagonals.

Original entry on oeis.org

2, 2, 2, 3, 2, 3, 4, 1, 1, 4, 5, 2, 2, 2, 5, 6, 2, 1, 1, 2, 6, 7, 3, 1, 2, 1, 3, 7, 8, 3, 2, 1, 1, 2, 3, 8, 9, 4, 2, 1, 2, 1, 2, 4, 9, 10, 4, 2, 1, 1, 1, 1, 2, 4, 10, 11, 5, 3, 2, 1, 2, 1, 2, 3, 5, 11
Offset: 1

Views

Author

Boris Putievskiy, Dec 21 2012

Keywords

Examples

			The start of the sequence as triangle array read by rows:
  2;
  2,2;
  3,2,3;
  4,1,1,4;
  5,2,2,2,5;
  6,2,1,1,2,6;
  ...
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    a = n-t*(t+1)/2
    b= (t*t+3*t+4)/2-n
    m= int(a/b)+int(b/a)

Formula

a(n) = floor(A002260(n)/A004736(n))+floor(A004736(n)/A002260(n)) or
a(n) = floor((n-t*(t+1)/2)/((t*t+3*t+4)/2-n)) + floor(((t*t+3*t+4)/2-n)/(n-t*(t+1)/2)), where t=floor((-1+sqrt(8*n-7))/2).