A220416 Table T(n,k) = ((n+k-1)*(n+k-2)/2+n)^n, n,k >0 read by antidiagonals.
1, 2, 9, 4, 25, 216, 7, 64, 729, 10000, 11, 144, 2197, 38416, 759375, 16, 289, 5832, 130321, 3200000, 85766121, 22, 529, 13824, 390625, 11881376, 387420489, 13492928512, 29, 900, 29791, 1048576, 39135393, 1544804416, 64339296875, 2821109907456
Offset: 1
Examples
The start of the sequence as triangle array is: 1; 2,9; 4,25,216; 7,64,729,10000; 11, 144, 2197, 38416, 759375; ...
Links
- Boris Putievskiy, Rows n = 1..30 of triangle, flattened
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Programs
-
Python
t=int((math.sqrt(8*n-7) - 1)/ 2) m=n**(n-t*(t+1)/2)
Formula
As a linear array, the sequence is a(n) = n^A002260(n) or
a(n) = n^(n-t(t+1)/2), where t=floor[(-1+sqrt(8*n-7))/2].
Comments