This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220417 #48 Oct 04 2019 13:13:44 %S A220417 0,1,-1,2,0,-2,3,1,-1,-3,4,0,0,0,-4,5,-7,-17,17,7,-5,6,-28,-118,0,118, %T A220417 28,-6,7,-79,-513,-399,399,513,79,-7,8,-192,-1844,-2800,0,2800,1844, %U A220417 192,-8,9,-431,-6049,-13983,-7849,7849,13983,6049,431,-9,10,-924,-18954,-61440,-61318,0,61318,61440,18954,924,-10 %N A220417 Table T(n,k) = k^n - n^k, n, k > 0, read by descending antidiagonals. %H A220417 Boris Putievskiy, <a href="/A220417/b220417.txt">Rows n = 1..76 of triangle, flattened</a> %F A220417 As a linear array, the sequence is a(n) = A004736(n)^A002260(n) - A002260(n)^A004736(n) or %F A220417 a(n) = ((t*t + 3*t + 4)/2 - n)^(n - t*(t + 1)/2) - (n - t*(t + 1)/2)^((t*t + 3*t + 4)/2 - n) where t = floor((-1 + sqrt(8*n - 7))/2). %e A220417 The table T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows: %e A220417 0 1 2 3 4 5 ... %e A220417 -1 0 1 0 -7 -28 ... %e A220417 -2 -1 0 -17 -118 -513 ... %e A220417 -3 0 17 0 -399 -2800 ... %e A220417 -4 7 118 399 0 -7849 ... %e A220417 -5 28 513 2800 7849 0 ... %e A220417 ... %e A220417 The start of the sequence as a triangular array, read by rows (i.e., descending antidiagonals of T(n,k)), is as follows: %e A220417 0; %e A220417 1, -1; %e A220417 2, 0, -2; %e A220417 3, 1, -1, -3; %e A220417 4, 0, 0, 0, -4; %e A220417 5, -7, -17, 17, 7, -5; %e A220417 6, -28, -118, 0, 118, 28, -6; %e A220417 ... %e A220417 In the above triangle, row number m contains m numbers: m^1 - 1^m, (m-1)^2 - 2^(m-1), ..., 1^m - m^1. %o A220417 (Python) %o A220417 t=int((math.sqrt(8*n-7) - 1)/ 2) %o A220417 m=((t*t+3*t+4)/2-n)**(n-t*(t+1)/2)-(n-t*(t+1)/2)**((t*t+3*t+4)/2-n) %o A220417 (PARI) matrix(9, 9, n, k, k^n - n^k) \\ _Michel Marcus_, Oct 04 2019 %Y A220417 Cf. A002260, A004736, A051128, A051129, A055651, A156353. %K A220417 sign,tabl %O A220417 1,4 %A A220417 _Boris Putievskiy_, Dec 14 2012