cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220422 Numerators of coefficients of an expansion of the logarithm of the Catalan numbers.

This page as a plain text file.
%I A220422 #11 Mar 16 2020 14:28:18
%S A220422 5,-1,65,-1381,50525,-2702761,199360985,-19391512141,2404879675445,
%T A220422 -370371188237521,69348874393137905,-15514534163557086901,
%U A220422 4087072509293123892365,-1252259641403629865468281,441543893249023104553682825,-177519391579539289436664789661
%N A220422 Numerators of coefficients of an expansion of the logarithm of the Catalan numbers.
%C A220422 Let C(n) denote the Catalan numbers A000108 and S(n) = Sum_{k>=1} a(k)/(2*k*(4*n+3)^(2*k)) then log(C(n)) = (1/2)*(n*log(16)-3*log(n+3/4)-log(Pi)+S(n)).
%D A220422 Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969.
%H A220422 J. L. Fields, <a href="https://doi.org/10.1017/S0013091500013171">A note on the asymptotic expansion of a ratio of gamma functions</a>, Proc. Edinburgh Math. Soc. 15 (1) (1966), 43-45.
%H A220422 D. Kessler and J. Schiff, <a href="http://u.math.biu.ac.il/~schiff/Papers/prepap3.pdf">The asymptotics of factorials, binomial coefficients and Catalan numbers</a>. April 2006.
%F A220422 a(n) = -4^(2*n+1)*B_{2*n+1}(-1/4)/(2*n+1), B_{n}(x) the Bernoulli polynomials.
%F A220422 a(n) = 4 - E(2*n), E the Euler numbers A122045.
%e A220422 Let N = 4*n+3 then log(C(n)) = (n*log(16)-3*log(n+3/4)-log(Pi))/2+a(1)/(4*N^2)+a(2)/(8*N^4)+a(3)/(12*N^6)+a(4)/(16*N^8)+O(1/N^10).
%p A220422 A220422 := n -> 4 - euler(2*n):
%o A220422 (Sage)
%o A220422 def A220422Generator() :
%o A220422     A = {-1:0, 0:1};
%o A220422     k = 0; e = 1; i = 0; m = 0
%o A220422     while True:
%o A220422         An = 0; A[k + e] = 0; e = -e
%o A220422         for j in (0..i) :
%o A220422             An += A[k]; A[k] = An; k += e
%o A220422         if e < 0 :
%o A220422             yield 4 - A[-m]*(-1)^m
%o A220422             m += 1
%o A220422         i += 1
%o A220422 A220422 = A220422Generator()
%o A220422 [next(A220422) for n in (1..16)]
%Y A220422 Cf. A000108, A122045.
%Y A220422 The exponential version is A220002.
%K A220422 sign
%O A220422 1,1
%A A220422 _Peter Luschny_, Dec 28 2012